Although small RNAs efficiently control transposition activity of most transposons in the host genome, such immune system is not always applicable against new transposon's invasions. Here we explored a possibility to introduce potentially mobile copy of the Penelope retroelement previously implicated in hybrid dysgenesis syndrome in Drosophila virilis into the genomes of two distant Drosophila species. The consequences of such introduction were monitored at different phases after experimental colonization as well as in D. virilis species which is apparently in the process of ongoing Penelope invasion. We investigated the expression of Penelope and biogenesis of Penelope-derived small RNAs in D. virilis and D. melanogaster strains originally lacking active copies of this element after experimental Penelope invasion. These strains were transformed by constructs containing intact Penelope copies. We show that immediately after transformation, which imitates the first stage of retroelement invasion, Penelope undergoes transposition predominantly in somatic tissues, and may produce siRNAs that are apparently unable to completely silence its activity. However, at the later stages of colonization Penelope copies may jump into one of the piRNA-clusters, which results in production of homologous piRNAs that are maternally deposited and can silence euchromatic transcriptionally active copies of Penelope in trans and, hence, prevent further amplification of the invader in the host genome. Intact Penelope copies and different classes of Penelope-derived small RNAs were found in most geographical strains of D. virilis collected throughout the world. Importantly, all strains of this species containing full-length Penelope tested do not produce gonadal sterility in dysgenic crosses and, hence, exhibit neutral cytotype. In order to understand whether RNA interference mechanism able to target Penelope operates in related species of the virilis group we correlated the presence of full-length and potentially active Penelope with the occurrence of piRNAs homologous to this TE in the ovaries of species comprising the group. It was demonstrated, that Penelope-derived piRNAs are present in all virilis group species containing full-length but transcriptionally silent copies of this element that probably represent the remnants of its previous invasions taking place in the course of the virilis species divergent evolution. Overall design: piRNA size profile (23-29nt) was examined in D. melanogaster strains, where Penelope-piRNAs are detected by Northern blot
Evolution and dynamics of small RNA response to a retroelement invasion in Drosophila.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.
Sex, Specimen part, Disease, Cell line, Race, Time
View SamplesTumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.
RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.
Specimen part, Cell line
View SamplesTumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.
RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.
Sex, Disease, Cell line, Race, Time
View SamplesTumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.
RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.
Sex, Specimen part, Cell line, Race
View SamplesTumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.
RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.
Sex, Specimen part, Cell line, Race
View SamplesTumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.
RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.
Specimen part, Cell line
View SamplesTumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.
RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.
Specimen part, Cell line
View SamplesType II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.
The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo.
Specimen part, Cell line, Time
View SamplesMaintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor Tcfap2c / TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tcfap2c in primordial germ cell-like cells. We show that loss of Tcfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation maturation markers and induction of markers indicative of somatic differentiation, cell cycle, epigenetic remodeling, and pluripotency associated genes. Chromatin-immunoprecipitation analyses demonstrated binding of Tcfap2c to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l) suggesting that these genes are direct transcriptional targets of Tcfap2c in primordial germ cells. Since Tcfap2c deficient primordial germ cell like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tcfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tcfap2c develop germ cell cancer with high incidence. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate, that mice with a heterozygous deletion of the Tcfap2c target gene Nanos3 are also prone to develop teratoma. These data highlight Tcfap2c as a critical and dose-sensitive regulator of germ cell fate.
Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice.
Specimen part
View Samples