We expressed a constitutively active mutant of MEK5 (MEK5D) in human primary endothelial cells (EC) to study the transcriptional and functional responses to Erk5 activation under static conditions.
Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4).
Cell line
View SamplesInflammation has a causal role in many cancers. In prostate cancers, epidemiological data suggest a link between prostatitis and subsequent cancer development, but a proof for this concept in a tumor model has been lacking. A constitutively active version of the IkappaB kinase 2 (IKK2), the molecule activated by a plethora of inflammatory stimuli, was expressed specifically in the prostate epithelium. Signaling of the IKK2/NF-kappaB axis was insufficient for transformation of prostate tissue. However, while PTEN+/- epithelia exhibited intraepithelial neoplasias only recognizable by nuclear alterations, additional IKK2 activation led to an increase in tumor size and formation of cribriform structures and to a fiber increase in the fibroblastic stroma. This phenotype was coupled with inflammation in the prostate gland characterized by infiltration of granulocytes and macrophages. Molecular characterization of the tissues showed a specific loss of smooth muscle markers as well as expression of chemokines attracting immune cells. Isolation of epithelial and stromal cells showed differential chemokine expression by these cells. Correlation studies showed the inflammatory phenotype coupled to loss of smooth muscle in infiltrated glands, but maintenance of the phenotype in glands where inflammation had decreased. Despite the loss of the smooth muscle barrier, tumors were not invasive in a stable genetic background. Data mining revealed that smooth muscle markers are downregulated in human prostate cancers and literature data show that loss of these markers in primary tumors is associated with subsequent metastasis. Our data show that loss of smooth muscle and invasiveness of the tumor are not coupled. Thus, inflammation during early steps of tumorigenesis can lead to increased tumor size and a potential change in the subsequent metastatic potential, but the tumor requires an additional transformation to become a carcinoma.
Persistent inflammation leads to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model.
Age, Specimen part
View SamplesThe objective of this study was to compare the transcriptional repertoire of mature human neutrophils before and after GM-CSF treatment by using oligonucleotide microarrays.
RhoH/TTF negatively regulates leukotriene production in neutrophils.
Specimen part
View SamplesBackground: Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of stage M patients present with disseminated tumor cells (DTCs) in the bone marrow (BM). Although these cells represent a major obstacle in the treatment of neuroblastoma patients, their transcriptomic profile was not intensively analyzed so far. Results: RNA-Seq of stage M primary tumors, enriched BM-derived DTCs and the corresponding non-tumor mononuclear cells (MNCs) revealed that DTCs largely retained the gene expression signature of tumors. However, we identified 322 genes that were differentially expressed (q < 0.001, |log2FC|>2). Particularly genes encoded by mitochondrial DNA were highly up-regulated in DTCs, whereas e.g. genes involved in angiogenesis were down-regulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q < 8x10-75 log2FC > 6). Interestingly, we found that the gene expression profiles of diagnostic DTCs largely resembled those of relapse DTCs with only 113 differentially expressed genes under relaxed cut-offs (q < 0.01, |log2FC| > 0.5). Notably, relapse DTCs showed a positional enrichment of 31 down-regulated genes encoded by chromosome 19, including five tumor suppressor genes (SIRT6, PUMA, STK11, CADM4 and GLTSCR2). Conclusion: This first RNA-Seq analysis of DTCs from neuroblastoma patients revealed their unique expression profile in comparison to the corresponding MNCs and tumor samples, and, interestingly, also expression differences between diagnostic and relapse DTCs preferentially affecting chromosome 19. As these alterations might be associated with treatment failure and disease relapse, they should be considered for further functional studies. Overall design: Tumor (n=16), bone marrow-derived disseminated tumor cells (n=42) and corresponding bone marrow-derived non-tumor cells (n=28) of stage M neuroblastoma patients were used for RNA-Seq
Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent tumor progression.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
Specimen part, Subject, Time
View SamplesMacrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a dataset of 299 macrophage transcriptomes. Analysis of this dataset revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
Subject, Time
View SamplesChronic lymphocytic leukemia (CLL) is a common and heterogeneous disease. An accurate prediction of outcome is highly relevant for the development of personalized treatment strategies. Microarray technology was shown to be a useful tool for the development of prognostic gene expression scores. However, there are no gene expression scores which are able to predict overall survival in CLL based on the expression of few genes that are better than established prognostic markers. We correlated 151 CLL microarray data sets with overall survival using Cox regression and supervised principal component analysis to derive a prognostic score. This score based on the expression levels of eight genes and was validated in an independent group of 149 CLL patients by quantitative real time PCR. The score was predictive for overall survival and time to treatment in univariate Cox regression in the validation data set (both: p<0.001) and in a multivariate analysis after adjustment for 17p and 11q deletions and the IgVH-status. The score achieved superior prognostic accuracy compared to models based on genomic aberrations and IgVH-status and may support personalized therapy.
An eight-gene expression signature for the prediction of survival and time to treatment in chronic lymphocytic leukemia.
Specimen part, Disease, Disease stage
View SamplesMacrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a dataset of 299 macrophage transcriptomes. Analysis of this dataset revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease. Overall design: Since transcriptional programs are further modulated on several levels including miRNAs we assessed the global spectrum of miRNA expression by miRNA-Seq in macrophages stimulated with IFN?, IL4 or with the combination of TNFa, PGE2 and P3C
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
No sample metadata fields
View SamplesCsUBC13 was identified via proteomics from iron starvation treated Cucumber root. ubc13A is an ABRC seed stock (CS51269). CS851269 was purchased from ABRC and confirmed as homozygous Atubc13A knock-out T-DNA mutant. We generated transgenic arabidopsis with ectopic expression of CsUBC13 gene under control of the cauliflower 35S promotor. Both genotypes and Col-0 were used to investigate the transcriptional response to Iron (Fe) deficiency.
A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots.
Specimen part
View SamplesDuring development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become regulatory T (Treg) cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined.
Continuous T cell receptor signals maintain a functional regulatory T cell pool.
Specimen part
View Samples