WNT-induced secreted protein 1 (WISP1/CCN4), a member of the CCN protein family, acts as a downstream factor of the canonical WNT-signaling pathway. A dysregulated expression of WISP1 often reflects its oncogenic potential by inhibition of apoptosis, a necessary form of cell death that protect cell populations for transformation into malignant phenotypes. WISP1-signaling is also known to affect proliferation and differentiation of human mesenchymal stem cells (hMSCs), which are fundamental for the constitution and maintenance of the musculoskeletal system. Our study emphasizes the importance of WISP1-signaling for cell survival of primary human cells. Therefore, we established a successful down-regulation of endogenous WISP1 transcripts through gene silencing in hMSCs. We were able to demonstrate the consequence of cell death immediately after WISP1 down-regulation took place. Bioinformatical analyses of subsequent performed microarrays from WISP1 down-regulated vs. control samples confirmed this observation. We uncovered several clusters of differential expressed genes important for cellular apoptosis induction and immuno-regulatory processes, thereby indicating TRAIL-induced and p53-mediated apoptosis as well as IFNbeta-signaling. Since all of them act as potent inhibitors for malignant cell growth, in vitro knowledge about the connection with WISP1-signaling could help to find new therapeutic approaches concerning cancerogenesis and tumor growth in musculoskeletal tissues.
WISP 1 is an important survival factor in human mesenchymal stromal cells.
Specimen part, Treatment
View SamplesIn this study we analyzed the myeloma cell contact-mediated changes on the transcriptome of skeletal precursor cells. Therefore, human mesenchymal stem cells (MSC) and osteogenic precursor cells (OPC) were co-cultured with the representative myeloma cell line INA-6 for 24 h. Afterwards, MSC and OPC were separated from INA-6 cells by fluorescence activated cell sorting. Total RNA of MSC and OPC fractions was used for whole genome array analysis.
Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease.
Sex, Age, Specimen part, Disease stage
View SamplesWe sequenced mRNA from livers of 7 dpf transgenic zebrafish overexpressing foxn3 (in the liver) and non-transgenic siblings Overall design: Examination of the changes in level of different mRNAs in foxn3 transgenic and wild type siblings
FOXN3 Regulates Hepatic Glucose Utilization.
No sample metadata fields
View SamplesRecently, the p53-miR-34a network was identified to play an important role in tumorigenesis. As in acute myeloid leukemia with complex karyotype (CK-AML) TP53 alterations are the most common known molecular lesion, we further analyzed the p53-miR-34a axis in CK-AML with known TP53 status. Clinically, low miR-34a expression and TP53 alterations predicted for chemotherapy resistance and inferior outcome. Notably, in TP53unaltered CK-AML high miR-34a expression predicted for inferior overall survival (OS), whereas in TP53biallelic altered CK-AML high miR-34a expression pointed to better OS.
Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance.
Disease
View SamplesThe transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.
Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.
Specimen part
View SamplesThe transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.
Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.
No sample metadata fields
View SamplesThe Hippo pathway is an emerging signaling cascade involved in the regulation of organ size control. It consists of evolutionally conserved protein kinases that are sequentially phosphorylated and activated. The active Hippo pathway subsequently phosphorylates a transcription coactivator, YAP, which precludes its nuclear localization and transcriptional activation. Identification of transcriptional targets of YAP in diverse cellular contexts is therefore critical to the understanding of the molecular mechanisms in which the Hippo pathway restricts tissue growth.
Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer.
Specimen part
View SamplesThe molecular biology of metastatic potential in melanoma has been studied many times previously and changes in the expression of many genes have been linked to metastatic behaviour. What is lacking is a systematic characterization of the regulatory relationships between genes whose expression is related to metastatic potential. Such a characterization would produce a molecular taxonomy for melanoma which could feasibly be used to identify epigenetic mechanisms behind changes in metastatic behaviour. To achieve this we carried out three separate DNA microarray analyses on a total of 86 cultures of melanoma. Significantly, multiple testing correlation revealed that previous reports describing correlations of gene expression with activating mutations in BRAF or NRAS were incorrect and that no gene expression patterns correlate with the mutation status of these MAPK pathway components. Instead, we identified three different sample cohorts (A, B and C) and found that these cohorts represent melanoma groups of differing metastatic potential. Cohorts A and B were susceptible to TGFbeta-mediated inhibition of proliferation and had low motility. Cohort C was resistant to TGFb and demonstrated high motility. Meta-analysis of the data against previous studies linking gene expression and phenotype confirmed that cohorts A and C represent transcription signatures of weakly and strongly metastatic melanomas, respectively. Gene expression co-regulation suggested that signalling via TGFbeta-type and Wnt pathways underwent considerable change between cohorts. These results suggest a model for the transition from weakly to strongly metastatic melanomas in which TGFbeta-type signalling upregulates genes expressing vasculogenic/extracellular matrix remodeling factors and Wnt signal inhibitors, coinciding with a downregulation of genes downstream of Wnt signalling.
Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature.
Sex, Age, Specimen part
View SamplesThe molecular biology of metastatic potential in melanoma has been studied many times previously and changes in the expression of many genes have been linked to metastatic behaviour. What is lacking is a systematic characterization of the regulatory relationships between genes whose expression is related to metastatic potential. Such a characterization would produce a molecular taxonomy for melanoma which could feasibly be used to identify epigenetic mechanisms behind changes in metastatic behaviour. To achieve this we carried out three separate DNA microarray analyses on a total of 86 cultures of melanoma. Significantly, multiple testing correlation revealed that previous reports describing correlations of gene expression with activating mutations in BRAF or NRAS were incorrect and that no gene expression patterns correlate with the mutation status of these MAPK pathway components. Instead, we identified three different sample cohorts (A, B and C) and found that these cohorts represent melanoma groups of differing metastatic potential. Cohorts A and B were susceptible to TGFbeta-mediated inhibition of proliferation and had low motility. Cohort C was resistant to TGFb and demonstrated high motility. Meta-analysis of the data against previous studies linking gene expression and phenotype confirmed that cohorts A and C represent transcription signatures of weakly and strongly metastatic melanomas, respectively. Gene expression co-regulation suggested that signalling via TGFbeta-type and Wnt pathways underwent considerable change between cohorts. These results suggest a model for the transition from weakly to strongly metastatic melanomas in which TGFbeta-type signalling upregulates genes expressing vasculogenic/extracellular matrix remodeling factors and Wnt signal inhibitors, coinciding with a downregulation of genes downstream of Wnt signalling.
Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature.
No sample metadata fields
View SamplesRecent trials with MAPK inhibitors have shown promising results in many patients with metastatic melanoma; however, nearly all responding patients experience disease relapse. We describe here how melanoma cells respond to MAPK inhibition in a phenotype-specific manner, suggesting that slow cycling invasive phenotype cells provide a treatment-resistant pool from which disease relapse may be derived. The implication is that while MAPK inhibition may successfully treat proliferating cells, another cell population needs to be addressed at the same time.
A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status.
Cell line
View Samples