To examine the effect of seminal fluid on the whole genome expression profile of endometrial tissue following mating, RNA was extracted from endometrial tissue collected 8 h after CBAF1 females were mated with intact Balb/c males and compared to RNA from endometrial tissue of females mated with seminal fluid deficient SVX/VAS Balb/c males. This comparison controlled for ovarian hormone status, exposure to the male and mating activity, and the neuroendocrine response to cervical and vaginal stimulus at mating, so that changes in endometrial gene expression could be attributed specifically to contact with seminal fluid. The endometrial RNA from n=16 individual females was pooled into four independent biological replicates per treatment group (n=4 endometrial samples per replicate) and expression profiles were analyzed by Affymetrix microarray. Seminal fluid exposure induced a clear difference in the profile of genes expressed in the endometrium with a total of 335 genes were differentially regulated with a fold-change greater than 1.5 and p<0.05. Of these, 190 genes were upregulated and 145 genes were downregulated following contact with seminal fluid. Bioinformatics analysis revealed TLR4 signaling as a strongly predicted upstream regulator activated by the differentially expressed genes.Additional experiments confirmed the role of TLR4 with the absence of TLR4 in TLR4 null mice resulting in a failure for seminal fluid to induce endometrial Csf3, Cxcl2, Il6 and Tnf expression. This study provides evidence that TLR4 contributes to seminal fluid modulation of the periconception immune environment. Activation of TLR4 signaling by microbial or endogenous components of seminal fluid is thus implicated as a key element of the female tract response to seminal fluid at the outset of pregnancy in mice.
TLR4 Signaling Is a Major Mediator of the Female Tract Response to Seminal Fluid in Mice.
Sex, Specimen part, Time
View SamplesMaternal IL10 deficiency elevates susceptibility to fetal loss induced by the model Toll-like receptor agonist lipopolysaccharide, but the mechanisms are not well elucidated. Here we show that Il10 null mutant (Il10-/-) mice exhibit altered local T cell responses in pregnancy, exhibiting pronounced hyperplasia in para-aortic lymph nodes draining the uterus with >6-fold increased CD4+ and CD8+ T cells compared with wild-type controls. Amongst these CD4+ cells, Foxp3+ Treg cells were substantially enriched, with 11-fold higher numbers at day 9.5 post coitum (pc). Lymph node hypertrophy in Il10-/- mice was associated with more activated phenotypes in dendritic cells and macrophages, with elevated expression of MHCII, scavenger receptor and CD80. Affymetrix microarray revealed an altered transcriptional profile in Treg cells from pregnant Il10-/- mice, with elevated expression of Ctse (cathepsin E), Il1r1, Il12rb2 and Ifng. In vitro, Il10-/- Treg cells showed reduced steady state Foxp3 expression, and polyclonal stimulation caused greater loss of Foxp3 and reduced capacity to suppress IL17 in CD4+Foxp3- T cells. We conclude that despite a substantially expanded Treg cell pool, diminished stability of Treg cells, increased numbers of effector T cells, and altered phenotypes in dendritic cells and macrophages in pregnancy all potentially confer vulnerability to inflammation-induced fetal loss in Il10-/- mice. These findings suggest a pivotal role for IL10 in facilitating robust immune protection of the fetus from inflammatory challenge and suggest IL10 deficiency could contribute to human gestational disorders where altered T cell responses are implicated.
Unstable Foxp3+ regulatory T cells and altered dendritic cells are associated with lipopolysaccharide-induced fetal loss in pregnant interleukin 10-deficient mice.
Specimen part
View SamplesThe DNA-binding protein, Ikaros, functions as a potent tumor suppressor and hematopoietic regulator. However, the mechanisms by which Ikaros functions in the nucleus remain largely undefined, due in part to its atypical DNA-binding properties and partnership with the poorly understood Mi-2/NuRD complex. In this study, we extended our analysis of thymocyte development and lymphomagenesis in a mouse strain containing a specific deletion of Ikaros zinc finger 4, which exhibits a select subset of abnormalities observed in Ikaros null mice. By examining thymopoiesis in vivo and in vitro, numerous abnormalities were observed. RNA-sequencing revealed that each developmental stage is characterized by mis-regulation of a limited number of genes, with a strong preference for genes modulated in a stage-specific manner. Strikingly, individual genes and pathways rarely exhibited Ikaros-dependence at all developmental stages. Instead, the most consistent feature of aberrantly expressed genes was a reduced magnitude of expression level change during a developmental transition. These results and others suggest that Ikaros may not be a dedicated and consistent activator or repressor of a defined set of genes. Instead, its primary function may be to support the dynamic range of gene expression changes during developmental transitions via atypical molecular mechanisms that remain undefined. Overall design: RNA-Seq of T cells at varying developmental stages and T cells expressing activated Notch in WT and Ikzf1-dF4/dF4 mutant backgrounds
Regulation of gene expression dynamics during developmental transitions by the Ikaros transcription factor.
No sample metadata fields
View SamplesThe protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.
MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of effect of long-term cryopreservation on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that long-term cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with decreasing signal intensities over time.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of cryopreservation effects on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with a strong loss of signal intensities to background levels for several transcripts.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Age, Specimen part
View SamplesAnalysis of long-term freezing on the stability of transcriptome profiles in PAXgene stabilized whole blood samples. In the present study it was tested if long-term freezing of PAXgene RNA tubes (up to one year) has an influence on the transcriptome profile of peripheral whole blood samples. Results indicated that gene expression profiles of whole blood samples stabilized with PAXgene RNA tubes remain stable for at least 1 year.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesHuman subjects were randomized for treatment with a GnRH-analogue, Goserelin, which suppresses endogenous testosterone or placebo for 12 weeks. Strength training was performed during the last 8 weeks. The suppression of testosterone resulted in an attenuation of the normal muscle adaptation to strength training (increased muscle mass and strength). To identify molecular signals involved in the response to testosterone levels, biopsies were obtained 4 hours after the last training session and gene expression compared with Affymetrix 3' microarrays. This timepoint should capture goserelin effect on both constitutive expression, training induced changes as well as acute exercise induced (4 hours) differences in mRNA levels.
The activity of satellite cells and myonuclei following 8 weeks of strength training in young men with suppressed testosterone levels.
Sex, Age, Specimen part, Treatment
View SamplesDiffuse large B-cell lymphoma (DLBCL) represents the most common form of lymphoma. We could show that in DLBCL cell lines the transcription factor NFAT is constitutively activated and drives the survival of a DLBCL subset. Aim of the analysis was to identify NFAT target genes in a NFAT-dependent (HBL-1) or -independent (HT) DLBCL cell line. To block NFAT activity, the DLBCL cells were treated with the calcineurin inhibitor cyclosporin A (CsA) up to 48 h. With this approach, we identified several survival-related NFAT target genes in HBL-1 cells that might explain the toxic effects of calcineurin inhibitors.
Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large B-cell lymphoma.
Treatment
View Samples