Purpose: To gain further mechanistic insight into phenotypic differences between wild type pancreatic islets and islets with loss of function of 4 Box C/D snoRNAs from the Rpl13a locus (U32a, U33, U34 and U35a). Methods:High quality total RNA (RIN = 8.5) was prepared from hand-picked islets (n = 4 mice/genotype) using TRIZOL reagent, treated with Turbo DNAse (Thermo Fisher), and used to prepare SeqPlex RNAseq libraries (Sigma). Sequencing was performed by the Washington University Genome Technology Access Center using two lanes of Illumina HiSeq 2500, 1x50. Reads were demultiplexed and trimmed, and STAR alignment and quantification analysis was carried out using the Partek Flow platform. Uniquely aligned reads were quantified to identify genes with at least a two-fold change between genotypes with p < 0.05 and FDR step-up of 0.05. Results:We observed 2-fold or greater differences in the expression of only six genes. Conclusions: Our data indicate that loss-of-function of snoRNAs from the Rpl13a locus is associated with modest changes in mRNA abundance. Overall design: Examination of murine pancreatic islet mRNA differential expression between wild type mice and mice with loss-of-function of U32a, U33, U34, and U35a snoRNAs.
Rpl13a small nucleolar RNAs regulate systemic glucose metabolism.
Age, Specimen part, Subject
View SamplesS. aureus biofilms are associated with the organism's ability to cause disease. Biofilm associated bacteria must cope with the host's innate immune system.
Global transcriptome analysis of Staphylococcus aureus biofilms in response to innate immune cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesGenome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesPurpose: To ensure that ABX464 acted specifically on HIV splicing and did not significantly or globally affect the splicing events of human genes, we used an assembly approach of HIV (YU2 strain) putative transcripts and human long non-coding sequences from paired-reads (2x75bp) captured on a NimbleGen SeqCap® EZ Developer Library (Roche/NimbleGen). Methods: Cells were infected with 80 ng of p24/106 cells of the YU-2 strain for 4 to 6 hours and then rinsed with PBS before medium renewal, followed by high-throughput RNAseq from custom SeqCap EZ capture libraries. Each raw dataset of the samples contained between 5 and 30 million paired-end reads (75 bp), with an average of approximately 12 million raw reads per sample. Results: The raw reads were then cleaned and assembled per library to generate contigs, giving an average of 930 contigs per sample for further analyses. Conclusions: Our results show that high-throughput analyses coupled with bioinformatics-specific tools offers a comprehensive and more accurate view of mRNA splicing within a cell. Overall design: We used buffy coats from HIV-negative individuals were obtained from the local blood donation center, then human peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll (Histopaque, Sigma) gradient centrifugation. Cells were infected with 80 ng of p24/106 cells of the YU-2 strain for 4 to 6 hours and then rinsed with PBS before medium renewal.
Both anti-inflammatory and antiviral properties of novel drug candidate ABX464 are mediated by modulation of RNA splicing.
Specimen part, Treatment, Subject
View SamplesGenome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesWe analyzed gene expression profiles of IL-18 generated murine NK cells in comparison to unstimulated, freshly isolated splenic NK cells.
Immunoregulatory natural killer cells suppress autoimmunity by down-regulating antigen-specific CD8+ T cells in mice.
Specimen part, Treatment
View SamplesmRNA sequencing was used to identify genome wide transcriptional changes occuring in fly heads in response to spermidine feeding. This study shed light on the molecular mechanisms through wich spermidine can protect against age-dependent memory impairment. Overall design: mRNA profiles from 3 and 10 day old Drosophila melanogaster heads were generated in duplicate by deep sequencing using Illumina GAIIx. mRNA profiles from flies that were fed food with 5mM spermidine were compared to profiles from flies that had no spermidine in thier food.
Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner.
Age, Specimen part, Subject
View SamplesUniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.
Parthenogenetic stem cells for tissue-engineered heart repair.
Specimen part
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem cells (HSCs) and during lymphopoiesis, identifying activities of 9 particular genes. Four of these were expressed in HSCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of common target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.
NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.
Cell line
View Samples