Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response program. We tested the hypothesis that a serum response program can be used to classify diseased tissues, and investigated the serum response program in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including RA, OA and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response program discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through 3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts.
Stromal transcriptional profiles reveal hierarchies of anatomical site, serum response and disease and identify disease specific pathways.
Specimen part, Disease
View SamplesSkeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). Obesity is tightly associated with T2D, making it challenging to isolate specific effects attributed to the disease alone. By using an in vitro myocyte model system we were able to isolate the inherent properties retained in myocytes originating from donor muscle precursor cells, without being confounded by varying extracellular factors present in the in vivo environment of the donor. We generated and characterized transcriptional profiles of myocytes from 24 human subjects, using a factorial design with two levels each of the factors T2D (healthy or diseased) and obesity (non-obese or obese), and determined the influence of each specific factor on genome-wide transcription. We identified a striking similarity of the transcriptional profiles associated independently with T2D or obesity. Obesity thus presents an inherent phenotype in skeletal myocytes, similar to that induced by T2D. Through bioinformatics analysis we found a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating the observed transcriptional signatures. Functional characterization of the expression profiles revealed dysregulated myogenesis and down-regulated muscle function in connection with T2D and obesity, as well as up-regulation of genes involved in inflammation and the extracellular matrix. Further on, we identified a metabolite subnetwork involved in sphingolipid metabolism and affected by transcriptional up-regulation in T2D. Collectively, these findings pinpoint transcriptional changes that are hard-wired in skeletal myocytes in connection with both obesity and T2D. Overall design: Isolated skeletal muscle precursor cells from 24 males and females (6 normal glucose tolerant, 6 obese, 6 type 2 diabetic, and 6 obese and type 2 diabetic) were differentiated in vitro and stimulated with insulin. RNA from fully differentiated myotubes sampled at 0, 0.5, 1, and 2 hours after insulin stimulation was quantified using RNA-seq (96 samples in total). The 6 base-line (0h) samples from normal glucose tolerant individuals are available under the submission GSE63887, the remaining 90 samples are contained in this submission.
Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes.
No sample metadata fields
View SamplesSkeletal myocytes are metabolically active and susceptible to insulin resistance, thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network-context to integrate high-throughput data. We generated myocyte-specific RNA-seq data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the down-regulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D. Overall design: Isolated skeletal muscle precursor cells from six normal glucose tolerant and non-obese males and females were differentiated in vitro. RNA from fully differentiated myotubes was sequenced using RNA-seq.
Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes.
No sample metadata fields
View Samples3 pairs of wt and ClC-6 knockout mice, RNA from p14 hippocampus
Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6.
Sex, Age, Specimen part, Subject, Time
View SamplesThe mammary gland is a highly dynamic organ that mainly develops during puberty. Based on morphology and proliferation analysis, mammary stem cells (MaSCs) are thought to be close to or reside in the terminal end buds (TEBs) during pubertal development. However, exclusive stem cell markers are lacking, and therefore the true identity of MaSCs, including their location, multiplicity, dynamics and fate during branching morphogenesis, has yet to be defined. To gain more insights into the molecular identity and heterogeneity of the MaSC pool, we performed single cell transcriptome sequencing of mammary epithelial cells micro-dissected from ducts and TEBs during puberty. These data show that the behaviour of MaSCs cannot be directly linked to a single expression profile. Instead, morphogenesis of the mammary epithelium relies upon a heterogeneous population of MaSCs that functions long-term as a single equipotent pool of stem cells. Overall design: Ducts and terminal end buds were micro-dissected from the 4th and the 5th murine mammary gland at 5 weeks-of-age, dissociated into single cells, and FACS sorted. Single-cell transcriptomics was performed on live cells using an automated version of CEL-seq2 on live, FACS sorted cells. The StemID algorithm was used to identify clusters of cells corresponding to basal and luminal cells types derived from ducts and terminal end buds.
Identity and dynamics of mammary stem cells during branching morphogenesis.
Cell line, Subject
View SamplesWe used microarray technology to profile mRNA expression in the skeletal muscle of normal (NGT), glucose intolerant (IGT) and type 2 diabetic (DM) subjects. Groups were classified using WHO criteria and, importantly, the DM group were free of anti hypoglycaemic medication for one week prior to biopsy.
Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes.
Sex, Age
View SamplesDespite their importance, plant MAP kinase targets are still poorly elucidated. Here, the specific in vivo interaction of an ethylene response factor (ERF104) with the Arabidopsis MAP kinase, MPK6, is shown by fluorescence resonance energy transfer. The interaction, which is lost within minutes after treatment with the flagellin-derived flg22 peptide, is dependent on both MPK6 kinase activity and rapid ethylene signaling initiated downstream of MPK6 activation. ERF104 is an MPK6 substrate and phosphorylation site mutations affected its stability. ERF104 activates promoters with GCC elements. This was evident from microarray data of overexpressing transgenic plants, where promoters of up regulated genes contain GCC motifs and chromatin immunoprecipitation showing ERF104 association with PDF1.2 promoter. The ERF104 overexpressor did not affect biotrophic bacteria proliferation but was more susceptible to necrotrophic Botrytis cinerea. Microarray performed with erf104 or mpk6 revealed only a limited number of flg22-induced genes that require these elements - possibly as a
Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling.
No sample metadata fields
View SamplesmRNA sequencing was used to identify genome wide transcriptional changes occuring in fly heads in response to spermidine feeding. This study shed light on the molecular mechanisms through wich spermidine can protect against age-dependent memory impairment. Overall design: mRNA profiles from 3 and 10 day old Drosophila melanogaster heads were generated in duplicate by deep sequencing using Illumina GAIIx. mRNA profiles from flies that were fed food with 5mM spermidine were compared to profiles from flies that had no spermidine in thier food.
Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner.
Age, Specimen part, Subject
View SamplesWe are reporting here the effects of adaptation to different ambient temperatures in the whole genome gene expression of interscapular BAT of BAT specific Akt2 knockout mice Overall design: Wildtype littermates and brown fat specific Akt2 KO mice (using UCP1-CreER) in B6/J background were adapted to 2 different ambient temperatures (30ºC, 22ºC) for a period of 4 weeks.
Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesWe are reporting here the effects of adaptation to different ambient temperatures in the whole genome gene expression of interscapular BAT Overall design: B6/J mice were adapted to three different ambient temperatures (30ºC, 22ºC and 6ºC) for a period of 4 weeks.
Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis.
Age, Specimen part, Cell line, Treatment, Subject
View Samples