We perform RNA-seq on matched orthotopic murine primary and metastatic prostate cancer samples to identify differential gene expressions Overall design: RNA-seq was performed on orthotopic murine primary and metastatic tumor samples using Illumina Hi-Seq 2000 platform
Top2a identifies and provides epigenetic rationale for novel combination therapeutic strategies for aggressive prostate cancer.
No sample metadata fields
View SamplesThe autoregulation of mycorrhization (AOM) describes a plant regulatory mechanism that limits the number of infection events by arbuscular mycorrhizal fungi. The key signal mediator is a receptor kinase (GmNARK) that acts in the shoots. Early signals of the mycorrhizal symbiosis induce a root-derived signal that activates GmNARK in the shoot finally leading to a systemic repression of subsequent infections in the root. So far, less is known about the signals down-stream of GmNARK. To find genes regulated by GmNARK in a mycorrhiza-dependent as well as in a mycorrhiza-independent manner, we used the Affymetrix GeneChip for soybean. In general, mycorrhizal root systems consist of both colonized and non-colonized, but autoregulated roots. To physically separate those two root types for transcript analysis of specifically regulated genes, we used the split-root system. Transcript profiling during AOM was done with material of Bragg wild-type and of the nark mutant nts1007, either non-inoculated or partially inoculated with the mycorrhizal fungus Rhizophagus irregularis (formerly Glomus intraradices). Wild-type and nark mutants were inoculated with R. irregularis on one half of the root-systems (root-parts "A") only. The remaining half of the root-systems stayed non-infected (root-parts "B"). Corresponding controls stayed completely non-infected. Gene expression was analyzed in inoculated root-parts, non-inoculated root-parts and shoots of three individual plants per treatment. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Sara Schaarschmidt. The equivalent experiment is GM53 at PLEXdb.]
Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.
Age, Specimen part
View SamplesType 2 diabetes is characterized by excessive lipid storage in skeletal muscle. Excessive intramyocellular lipid storage exceeds intracellular needs and induces lipotoxic events ultimately contributing to the development of insulin resistance. Lipid droplet (LD)-coating proteins may control proper lipid storage in skeletal muscle. Perilipin 2 (PLIN2/ADRP) is one of the most abundantly expressed LD-coating proteins in skeletal muscle. Here we examined the role of PLIN2 in myocellular lipid handling and insulin sensitivity by investigating the effects of in vitro PLIN2 knockdown and in vitro and in vivo overexpression. PLIN2 knockdown decreased LD formation and triacylglycerol storage, marginally increased FA oxidation, and increased incorporation of palmitate into diacylglycerols and phospholipids. PLIN2 overexpression in vitro increased intramyocellular TAG storage paralleled with improved insulin sensitivity. In vivo muscle-specific PLIN2 overexpression resulted in increased LD accumulation and blunted the high-fat diet-induced increase of OXPHOS protein content. Diacylglycerol levels were unchanged, while ceramide levels were increased. Despite the increased intramyocellular lipid accumulation, PLIN2 overexpression improved skeletal muscle insulin sensitivity. We conclude that PLIN2 is essential for lipid storage in skeletal muscle by enhancing the partitioning of excess FAs towards triacylglycerol storage in LDs thereby blunting lipotoxicity-associated insulin resistance.
Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels.
Cell line
View SamplesThe transcriptomics changes induced in the human liver cell line HepG2 by low and high doses of acetaminophen and solvent controls after treatment for 4 time points (12h, 24h, 48h and 72h)
Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain.
Specimen part, Cell line, Time
View SamplesMicroRNA-520f regulates EMT, as it activates CDH1 (mRNA) and E-cadherin (protein) expression, and it suppresses tumor cell invasion. We have characterized miR-520f target genes through whole genome transcriptional profiling of miRNA transfected pancreas cancer cells (PANC-1).
miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting <i>ADAM9</i> and <i>TGFBR2</i>.
Cell line, Treatment
View SamplesThe PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy-prone, age at an accelerated rate and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early ageing.
The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification.
Sex, Specimen part, Time
View SamplesBrown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of beige cells from murine white fat depots.
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.
Cell line
View SamplesWe used mouse Clariom-S microarrays to study the gene expression profile of ID8 cancer cells stimulated with C-C Chemokine Ligand 6 (CCL6).
Omental macrophages secrete chemokine ligands that promote ovarian cancer colonization of the omentum via CCR1.
Specimen part, Cell line
View SamplesOur laboratory has recently discovered that E. coli cells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for Thymineless Death (TLD). Conditions for specific dGTP starvation can be achieved by depriving an E. coli optA1 gpt strain of the purine nucleotide precursor hypoxanthine (Hx). To gain insight into the mechanisms underlying dGTP starvation, we conducted genome-wide gene expression analyses on actively growing optA1 gpt strains subjected to hypoxanthine deprivation for increasing periods of time. The data show that, upon Hx withdrawal, the optA1 gpt strain displays a diminished ability to de-repress the de novo purine biosynthesis genes, and this is likely due to internal guanine accumulation. The impairment to fully induce the purR regulon may be a contributing factor to the lethality of dGTP starvation. At later time points, and coinciding with cell lethality, strong induction of the SOS is observed, supporting the concept of replication stress as a final cause of death. No evidence was observed for the participation of other stress responses, including the rpoS-mediated global stress response in the starved cells, and reinforcing the lack of feedback of replication stress into the global metabolism of the cell. The genome-wide expression data also provide direct evidence for increased genome complexity during dGTP starvation, as a markedly increased gradient is observed for expression of genes located nearby the replication origin relative to those located towards the replication terminus.
Transcriptome Analysis of Escherichia coli during dGTP Starvation.
No sample metadata fields
View SamplesBackground: The prevalence of type 2 diabetes has increased dramatically in recent decades. Increasing brown adipose tissue (BAT) mass and activity has recently emerged as an interesting approach to not only increase energy expenditure, but also improve glucose homeostasis. BAT can be recruited by prolonged cold exposure in lean, healthy humans. Here, we tested whether cold acclimation could have therapeutic value for patients with type 2 diabetes by improving insulin sensitivity. Methods: Eight type 2 diabetic patients (age 59.35.8 years, BMI 29.83.2 kg/m2) followed a cold acclimation protocol, consisting of intermittent cold exposure (6 hours/day, 14-14.5 C) for 12 consecutive days. Before and after cold acclimation, cold-induced BAT activity was assessed by [18F]FDG-PET/CT scanning, insulin sensitivity at thermoneutrality by a hyperinsulinemic-euglycemic clamp, and muscle and WAT biopsies were taken. Results: Cold-induced BAT activity was low, but increased in all patients upon cold acclimation (SUV from 0.400.29 to 0.630.78, p<0.05). Interestingly, insulin sensitivity showed a very pronounced 40% increase upon cold acclimation (glucose rate of disappearance from 14.94.1 to 20.56.9 mol kg-1 min-1, p<0.05). A 40% increase in insulin sensitivity cannot be explained by BAT glucose uptake, in fact basal skeletal muscle GLUT4 content and translocation was markedly increased after cold acclimation, without effects on insulin signaling or AMPk activation. Conclusions: Regular mild cold exposure has marked effects on insulin sensitivity, which are accompanied by small increases in BAT activity and more pronounced effects on skeletal muscle. These data suggest a novel therapeutic option for the treatment of type 2 diabetes.
Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus.
Subject
View Samples