Background: Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures. Methods: We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of different potential stem cell markers: CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts mRNA expression of the investigated markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated in vivo. Results: All surface markers showed distinct expression patterns in the examined tumours. Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated markers. CD44 and CXCR4 mRNA expression correlated within the cell line panel and CD44 and CDCP1 within the xenograft panel, respectively. Small subpopulations of double and triple positive cells could be described. SW620 showed significantly higher take rates and shorter doubling times in vivo when sorted for CD133 positivity. Conclusion: Our data support the hypothesis of a small subset of cells with stem cell-like properties characterized by a distinct surface marker profile. In vivo growth kinetics give strong relevance for an important role of CD133 within the mentioned surface marker profile.
Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker.
Sex, Age, Specimen part
View SamplesThe aim of the study is to identify AR target gens in LNCaP cells Overall design: 6 samples correponding to 2 times 3 replicates were used for the study
Assembly of methylated KDM1A and CHD1 drives androgen receptor-dependent transcription and translocation.
No sample metadata fields
View SamplesTranscriptomic profiling of normal mouse thyroid tissue following 211At irradiation
Transcriptional response of BALB/c mouse thyroids following in vivo astatine-211 exposure reveals distinct gene expression profiles.
Specimen part
View SamplesRNA microarray analysis of low-dose and dose rate responses versus time after i.v. administration of 211At.
Transcriptional response in normal mouse tissues after i.v. (211)At administration - response related to absorbed dose, dose rate, and time.
Sex, Specimen part, Time
View SamplesTo analyze the functional relevance of LSD1 in neuroblastic tumors, SH-SY5Y cells were transiently transfected with siRNA directed against LSD1 or with a scrambled control siRNA. Microarray analysis revealed changes in expression that were consistent with these observations 72 hours after LSD1 knock-down. At this time, 28 genes were significantly induced at least 1.5-fold and 29 genes were significantly repressed at least 1.5-fold. Among the 28 induced genes, 4 are markers of cytoskeletal remodelling (TNS1, TPM1, DNM2, DNAL4), indicating differentiation, and 3 (TPM1, DNM2 and SHANK2) are functionally linked to neurite dynamics and synaptic trafficking. TaqMan quantitative RT-PCR confirmed the expression changes detected via microarray analysis for LSD1, DNAL4, DNM2, TNS1 and TPM1
Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Time-dependent transcriptional response of GOT1 human small intestine neuroendocrine tumor after <sup>177</sup>Lu[Lu]-octreotate therapy.
Time
View SamplesNeural cell adhesion molecule 1 (NCAM1; also known as CD56) is expressed in up to 20% of acute myeloid leukemia (AML) patients. Expression of NCAM1 is widely used as a marker of minimal residual disease; however, the biological function of this cell surface protein in AML remains elusive. In this study we investigated the impact of aberrant NCAM1 expression on leukemogenesis, drug resistance and its role as a biomarker to guide therapy.Gene expression profiling was performed with RNA-seq in three cell lines (SKM-1, NOMO-1, MOLM-14) after doxycycline-mediated induction of scrambled shRNA or shNCAM1 at timepoint 72 hours. Overall design: mRNA profiles of cell lines SKM-1, NOMO-1, MOLM-14 transfected either with scrambled shRNA or shRNA-NCAM1 were generated using TruSeq RNA Library Prep Kit v2 (Illumina) followed by sequencing with 100 bp paired-end reads on HiSeq 2000.
NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML.
Cell line, Subject
View SamplesInduced pluripotent stem cells (iPSCs) are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs). However, successfully reprogrammed cells are highly proliferative and escape from cellular senescence - it is therefore conceivable that they outgrow non-pluripotent and partially reprogrammed cells during culture expansion without the need of clonal selection. In this study, we have reprogrammed human dermal fibroblasts (HDFs) with episomal plasmid vectors. Colony frequency and size was higher when using murine embryonic fibroblasts (MEFs) as stromal support instead of HDFs or human mesenchymal stromal cells (MSCs). We have then compared iPSCs which were either clonally derived by manual selection of a single colony, or derived from bulk-cultures of all initial colonies. After few passages their morphology, expression of pluripotency markers, and gene expression profiles did not reveal any significant differences. Furthermore, clonally-derived and bulk-cultured iPSCs had indistinguishable in vitro differentiation potential towards the three germ layers. Therefore, manual selection of individual colonies does not appear to be necessary for the generation of iPSCs this is of relevance for standardization and automation of cell culture procedures
To clone or not to clone? Induced pluripotent stem cells can be generated in bulk culture.
Sex, Specimen part
View SamplesWe generated Gadd45a,b,g triple-knockout mouse embryonic stem cells and performed RNA-seq expression profiling under six different conditions of cell culture and in vitro differentiation. Overall design: Gadd45a,b,g triple knockout (TKO) mouse embryonic stem cells (mESC) were generated by CRISPR/Cas9. RNA-Seq was performed to compare the transcriptome in three independent Gadd45 TKO versus three independent control mESC lines under different conditions: (i) Serum cultured mESC, (ii) Vitamin C treated mESC, (iii) 2i treated mESC, (iv) mESC differentiated as embryoid bodies (EB), (v) mESC differentiated as a serum-free monolayer, and (vi) EB stimulated with retinoic acid (RA).
GADD45 promotes locus-specific DNA demethylation and 2C cycling in embryonic stem cells.
Specimen part, Cell line, Subject
View SamplesWNT-induced secreted protein 1 (WISP1/CCN4), a member of the CCN protein family, acts as a downstream factor of the canonical WNT-signaling pathway. A dysregulated expression of WISP1 often reflects its oncogenic potential by inhibition of apoptosis, a necessary form of cell death that protect cell populations for transformation into malignant phenotypes. WISP1-signaling is also known to affect proliferation and differentiation of human mesenchymal stem cells (hMSCs), which are fundamental for the constitution and maintenance of the musculoskeletal system. Our study emphasizes the importance of WISP1-signaling for cell survival of primary human cells. Therefore, we established a successful down-regulation of endogenous WISP1 transcripts through gene silencing in hMSCs. We were able to demonstrate the consequence of cell death immediately after WISP1 down-regulation took place. Bioinformatical analyses of subsequent performed microarrays from WISP1 down-regulated vs. control samples confirmed this observation. We uncovered several clusters of differential expressed genes important for cellular apoptosis induction and immuno-regulatory processes, thereby indicating TRAIL-induced and p53-mediated apoptosis as well as IFNbeta-signaling. Since all of them act as potent inhibitors for malignant cell growth, in vitro knowledge about the connection with WISP1-signaling could help to find new therapeutic approaches concerning cancerogenesis and tumor growth in musculoskeletal tissues.
WISP 1 is an important survival factor in human mesenchymal stromal cells.
Specimen part, Treatment
View Samples