Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding Overall design: RNA-seq
Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding.
Specimen part, Cell line, Subject
View SamplesSignal transducer and activator of transcription 3 (STAT3) is altered in several epithelial cancers and represents a potential therapeutic target. Here, STAT3 expression, activity and cellular functions were examined in two main histotypes of esophageal carcinomas. In situ, immunohistochemistry for STAT3 and STAT3-Tyr705 phosphorylation (P-STAT3) in esophageal squamous cell carcinomas (ESCC) and Barretts adenocarcinomas (BAC) revealed similar STAT3 expression in ESCCs and BACs, but preferentially activated P-STAT3 in ESCCs. In vitro, strong STAT3 activation was seen by EGF-stimulation in OE21 (ESCC) cells, whilst OE33 (BAC) cells showed constitutive weak STAT3 activation. STAT3 knockdown significantly reduced cell proliferation of OE21 and OE33 cells and reduced cell migration in OE33, but not in OE21 cells. Transcriptome analysis identified STAT3-knockdown associated down-regulation of cell cycle processes and the selective down-regulation of cyclins and cyclin dependent kinaes associated genes in both OE21 and OE33 cells. Moreover, the transcriptome response showed changes in cell migration/invasion related genes that correlated with the associated phenotype measurements. This study demonstrates the importance of STAT3 expression and activation in esophageal carcinomas, whereby the extent differs between ESCCs and BACs. STAT3 knockdown significantly reduces cell proliferation in both types of esophageal cancer cells and inhibits migration in BAC cells. Thus, STAT3 may be further exploited as potential novel therapeutic target for esophageal cancers.
STAT3 expression, activity and functional consequences of STAT3 inhibition in esophageal squamous cell carcinomas and Barrett's adenocarcinomas.
Cell line, Treatment
View SamplesDuring embryogenesis, enhancer-promoter interactions control gene transcriptional activation. These interactions can be tissue-specific or tissue-invariant and occur mostly within larger insulated regulatory domains called Topologically Associating Domains (TADs). Boundary elements, which delineate the extent of TADs, frequently interact with each other and have been associated with constitutive transcription and CTCF/Cohesin binding. In this work, we set out to investigate the regulatory role of a tissue-invariant, preformed interaction between two boundaries that involve the Shh gene and its unique limb enhancer, the ZRS, located one megabase away. Using CRISPR/Cas9 we specifically perturb CTCF binding sites or constitutive transcription at the ZRS-containing boundary, without altering the enhancer sequence. Using capture-HiC (cHiC) we show that both types of perturbation result in altered preformed chromatin interactions and lead to a reduction of Shh expression in developing limb buds. Finally, we demonstrate that the disruption of the chromatin structure in combination with a hypomorphic ZRS allele results in a dramatic Shh loss- of- function and digit agenesis. We thus propose that preformed chromatin structures can ensure stable enhancer promoter communication during development and robustness of gene transcriptional activation. Overall design: We performed transcriptome analysis to confirm the complete loss of the Lmbr1 transcript due to the deletion of its promoter and to detect other potential non-coding transcripts at the locus.
Preformed chromatin topology assists transcriptional robustness of <i>Shh</i> during limb development.
Cell line, Subject
View SamplesGenome-scale methods have identified subchromosomal structures so-called topologically associated domains (TADs) that subdivide the genome into discrete regulatory units, establish with their target genes. By re-engineering human duplications at the SOX9 locus in mice combined with 4C-seq and Capture Hi-C experiments, we show that genomic duplications can result in the formation of novel chromatin domains (neo-TADs) and that this process determines their molecular pathology. Overall design: RNA-seq of embryonic limb buds for WT and mutant animals carrying structural variations at the Sox9/Kcnj locus.
Formation of new chromatin domains determines pathogenicity of genomic duplications.
Specimen part, Subject
View SamplesThe protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.
MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.
Treatment
View SamplesDiffuse large B-cell lymphoma (DLBCL) represents the most common form of lymphoma. We could show that in DLBCL cell lines the transcription factor NFAT is constitutively activated and drives the survival of a DLBCL subset. Aim of the analysis was to identify NFAT target genes in a NFAT-dependent (HBL-1) or -independent (HT) DLBCL cell line. To block NFAT activity, the DLBCL cells were treated with the calcineurin inhibitor cyclosporin A (CsA) up to 48 h. With this approach, we identified several survival-related NFAT target genes in HBL-1 cells that might explain the toxic effects of calcineurin inhibitors.
Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large B-cell lymphoma.
Treatment
View SamplesConditional ablation of Ezh2 in the neural crest lineage results in loss of the neural crest-derived mesenchymal derivatives. In this data sheet we determine gene expression analysis in Ezh2lox/lox and Wnt1Cre Ezh2lox/lox in E11.5 mouse BA1 cells.
Ezh2 is required for neural crest-derived cartilage and bone formation.
Specimen part
View SamplesIn this study we investigated the effect of normal chow (0 % cholesterol) or a semisynthetic diet (high sugar, 0.02 % cholesterol) fed to mice lacking either Mc4r, Ldlr or both and wildtype animals (total of 4 genotypes) by generating an expression profile of their livers after 6 months by RNA sequencing. Overall design: We investigated mice lacking either Mc4r, Ldlr or both and wildtype animals fed with normal chow or a semisynthetic diet with 10 replicates for each of the 8 resulting groups (4 genotypes * 2 diets).
Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor.
Age, Specimen part, Cell line, Subject
View SamplesInterference with chemoresistance to enhance the efficacy of chemotherapeutics may be of great utility for cancer therapy. We have identified KINK-1 (Kinase Inhibitor of NF-kappaB-1), a highly selective small-molecule IKKkappa inhibitor, as a potent suppressor of both constitutive and induced NF-kappaB activity in melanoma cells. While KINK-1 profoundly diminished various NF-kappaB-dependent gene products regulating proliferation, cytokine production or anti-apoptotic responses, the compound by itself showed little antiproliferative or pro-apoptotic activity on the cellular level. However, its combination with some cytostatics markedly enhanced their antitumoral activities in vitro, and doxorubicin-induced NF-kappaB activation, a mechanism implicated in chemoresistance, was abrogated by KINK-1. In addition, when KINK-1 was combined with doxorubicin in an in vivo melanoma model, experimental metastasis was significantly diminished as compared to either treatment alone. Induction of chemoresistance by KINK-1 in vivo was not observed. Thus, KINK-1 or related substances might increase the susceptibility of tumors to chemotherapy.
KINK-1, a novel small-molecule inhibitor of IKKbeta, and the susceptibility of melanoma cells to antitumoral treatment.
No sample metadata fields
View SamplesNaive spleens as well as naive and LPS-treated dendritic cells from wildtype and GPR34-/- mice were sequenced to integrate expression profiles with protein interaction networks and find functional modules that are affected by GPR34 Overall design: Expression profiles of dendritic cells and whole spleens were generated using Illumina HiSeq 2500/ Illumina HiScan
Dendritic Cells Regulate GPR34 through Mitogenic Signals and Undergo Apoptosis in Its Absence.
No sample metadata fields
View Samples