Retinoic acid receptors (RARs) , , and heterodimerize with Retinoid X receptors (RXR) , , and and bind the cis-acting response elements known as RAREs to execute the biological functions of retinoic acid during mammalian development. RAR mediates the anti-proliferative and apoptotic effects of retinoids in certain tissues and cancer cells, such as melanoma and neuroblastoma cells. Furthermore, ablation of RAR enhanced the tumor incidence of Ras transformed keratinocytes and was associated with resistance to retinoid mediated growth arrest and apoptosis.
RARγ is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells.
Specimen part, Treatment, Time
View SamplesInactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway.
Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.
Cell line
View SamplesTransplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop because ECs are difficult to culture and little is known about how to sustain their vascular identity and direct them to form long-lasting new vessels or engraft into existing ones. We found that multiple non-vascular cell types transiently expressed EC markers after enforced expression of the transcription factors, Etv2, Erg, and Fli1. However, only mid-gestational amniotic cells could be converted to cells that maintained EC gene expression and proliferated in culture to yield billions of vascular cells. Even so, these converted cells performed sub-optimally in assays of EC function. We used constitutive Akt signaling to mimic the shear forces of the vascular environment and promote EC survival in an effort to correct the deficiencies of the converted cells. Akt signaling increased gene expression of EC morphogenesis genes, including Sox17, shifted the genomic targeting of Fli1 to favor nearby Sox consensus sites, and enhanced the in vivo vascular function of EC-like converted cells. Enforced expression of Sox17 was dispensable for broad EC gene activation, but indispensable for vascular engraftment and reperfusion of ischemic tissue. Our results identify a transcription factor network comprised of Ets and Sox17 factors that specifies and sustains endothelial cell fate and function. This work shows that the commonly used criterion of transcriptional similarity for cell conversion can fail to predict in vivo vascular function. Our approach shows that stringent functional testing in vitro and in vivo is necessary to validate engineered endothelial cell grafts. Overall design: Transcriptome sequencing of endothelial cells and amniotic cells
Sox17 drives functional engraftment of endothelium converted from non-vascular cells.
Specimen part, Subject
View SamplesInactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway.
Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.
Cell line
View SamplesInactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway.
Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.
Cell line
View SamplesInactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway.
Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.
Cell line
View SamplesInactivation of the von Hippel-Lindau tumor suppressor gene, VHL, is an archetypical tumor-initiating event in clear cell renal carcinoma (ccRCC) that leads to the activation of hypoxia-inducible transcription factors (HIFs). However, VHL mutation status in ccRCC is not correlated with clinical outcome. Here we show that during ccRCC progression, cancer cells exploit diverse epigenetic alterations to empower a branch of the VHL-HIF pathway for metastasis, and the strength of this activation is associated with poor clinical outcome. By analyzing metastatic subpopulations of VHL-deficient ccRCC cells, we discovered an epigenetically altered VHL-HIF response that is specific to metastatic ccRCC. Focusing on the two most prominent pro-metastatic VHL-HIF target genes, we show that loss of polycomb repressive complex 2 (PRC2)-dependent histone H3 Lys27 trimethylation (H3K27me3) activates HIF-driven chemokine (C-X-C motif) receptor 4 (CXCR4) expression in support of chemotactic cell invasion, whereas loss of DNA methylation enables HIF-driven cytohesin 1 interacting protein (CYTIP) expression to protect cancer cells from death cytokine signals. Thus, metastasis in ccRCC is based on an epigenetically expanded output of the tumor-initiating pathway.
Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer.
No sample metadata fields
View SamplesMouse lymphoma cells were co-cultured with endothelial cells in serum/cytokine-free condition. To identify specific genetic changes, we compared lymphoma cells cultured in medium containing 10% fetal bovine serum with lymphoma cells co-cultured with endothelial cells.
Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance.
Specimen part
View SamplesDevelopmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGF? and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders. Overall design: Expression profiling by high throughput sequencing data; GPL17021 Illumina HiSeq 2500 (Mus musculus)
Conversion of adult endothelium to immunocompetent haematopoietic stem cells.
Specimen part, Subject
View SamplesDiffuse large B-cell lymphoma (DLBCL), the most common form of lymphoma in adulthood, comprises multiple biologically and clinically distinct subtypes including germinal center B cell-like (GCB) and activated B cell like (ABC) DLBCL. Gene expression profile studies have shown that its most aggressive subtype, ABC-DLBCL, is associated with constitutive activation of the NF-kB transcription complex. However, except for a small fraction of cases, it remains unclear whether NF-kB activation in these tumors represents an intrinsic program of the tumor cell of origin or a pathogenetic event. Here we show that >50% of ABC-DLBCL and a smaller fraction of GCB-DLBCL carry somatic mutations at multiple genes, including negative (TNFAIP3/A20) and positive (CARD11, TRAF2, TRAF5, MAP3K7/TAK1 and TNFRSF11A/RANK) regulators of NF-kB. Of these, the A20 gene, which encodes for a ubiquitin-modifying enzyme involved in termination of NF-kB responses, is the most commonly affected one, with ~30% of the patients displaying biallelic inactivation by mutations and/or deletions, suggesting a tumor suppressor role. Less frequently, missense mutations of TRAF2 and CARD11 produce molecules with significantly enhanced ability to activate NF-kB. Thus, our results demonstrate that NF-kB activation in DLBCL is caused by genetic lesions affecting multiple genes, whose loss or activation may promote lymphomagenesis by leading to abnormally prolonged NF-kB responses.
Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma.
Specimen part, Cell line
View Samples