Four vehicle-treated and four HhAntag-treated pancreatic xenograft tumors were profiled for gene expression changes using Affymetrix U133 Plus 2.0 and Affymetrix Mouse Genome 430 2.0 arrays.
A paracrine requirement for hedgehog signalling in cancer.
No sample metadata fields
View SamplesThe insulin-like growth factor (IGF) system consists of two ligands (IGF-I and IGF-II), which both signal through type I IGF receptor (IGF-IR) to stimulate proliferation and inhibit apoptosis, with activity contributing to malignant growth of many types of human cancers. We have developed a humanized, affinity-matured anti-human IGF-IR monoclonal antibody (h10H5), which binds with high affinity and specificity to the extracellular domain. h10H5 inhibits IGF-IR-mediated signaling by blocking IGF-I and IGF-IIbinding and by inducing cell surface receptor down-regulation via internalization and degradation. In vitro, h10H5 exhibits anti-proliferative effects on cancer cell lines. In vivo, h10H5 demonstrates single-agent anti-tumor efficacy in human SK-N-AS neuroblastoma and SW527 breast cancer xenograft models, and even greater efficacy in combination with the chemotherapeutic agent Docetaxel or an anti-VEGF antibody. Anti-tumor activity of h10H5 is associated with decreased AKT activation and glucose uptake, and a 316-gene transcription profile with significant changes involving DNA metabolic and cell cycle machineries. These data support the clinical testing of h10H5 as a biotherapeutic for IGF-IR-dependent human tumors.
Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake.
No sample metadata fields
View SamplesOligonucleotide and complementary DNA microarrays are being used to subclassify histologically similar tumours, monitor disease progress, and individualize treatment regimens. However, extracting new biological insight from high-throughput genomic studies of human diseases is a challenge, limited by difficulties in recognizing and evaluating relevant biological processes from huge quantities of experimental data. Here we present a structured network knowledge-base approach to analyse genome-wide transcriptional responses in the context of known functional interrelationships among proteins, small molecules and phenotypes. This approach was used to analyse changes in blood leukocyte gene expression patterns in human subjects receiving an inflammatory stimulus (bacterial endotoxin). We explore the known genome-wide interaction network to identify significant functional modules perturbed in response to this stimulus. Our analysis reveals that the human blood leukocyte response to acute systemic inflammation includes the transient dysregulation of leukocyte bioenergetics and modulation of translational machinery. These findings provide insight into the regulation of global leukocyte activities as they relate to innate immune system tolerance and increased susceptibility to infection in humans.
A network-based analysis of systemic inflammation in humans.
No sample metadata fields
View SamplesCharacterize the gpm1 mutant growth on dual substrate of ethanol and glycerol
Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis.
No sample metadata fields
View SamplesPhysiological, anatomical, and clinical laboratory analytic scoring systems (APACHE, Injury Severity Score (ISS)) have been utilized, with limited success, to predict outcome following injury. We hypothesized that a peripheral blood leukocyte gene expression score could predict outcome, including multiple organ failure, following severe blunt trauma.
A genomic score prognostic of outcome in trauma patients.
Sex, Age
View SamplesIn order to define the transcriptional network functionally regulated by Pax8 as well as infer its direct targets, we performed RNAi to knock-down Pax8 gene in FRTL-5 thyroid cells. Expression data from three independent silencing experiments were analyzed by microarray technology unraveling 2815 genes differentially expressed between silenced cells and controls. Of these, 1421 genes were down-regulated and 1394 genes were up-regulated 72hrs after Pax8 silencing.
Identification of novel Pax8 targets in FRTL-5 thyroid cells by gene silencing and expression microarray analysis.
Cell line
View SamplesPlants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remain scarce.
WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.
Treatment
View SamplesAmyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular disorder characterized by the selective degeneration of upper and lower motor neurons, progressive muscle wasting and paralysis. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we performed high-density oligonucleotide microarray analysis of gene expression in hind limb skeletal muscles of sod1(G86R) mice, one of the existing transgenic models of ALS. To monitor denervation-dependent gene expression, we determined the effects of short-term acute denervation on the muscle transcriptome after sciatic nerve axotomy.
Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesLiving organisms have to cope with multiple and combined fluctuations in their environment. According to their sessile mode of life, plants are even more subjected to such fluctuations impacting their physiology and development. In particular, nutrient availability is known to tune plant development through modulating hormonal signaling, and conversely, hormonal signals are key to control nutrient related signaling pathways (Krouk et al., 2011a). However, very few is known about molecular mechanisms leading to plant adaptation to such combined signals. Here we deployed an unprecedented combinatorial treatment matrix to reveal plant adaptation in response to nitrate (NO3-), ammonium (NH4+), auxin (IAA), cytokinins (CK) and abscisic acid (ABA) and their exhaustive binary combinations.
Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root.
Specimen part, Time
View SamplesHER2 is a tyrosine kinase receptor causally involved in cancer. A subgroup of breast cancer patients with particularly poor clinical outcome expresses a heterogeneous collection of HER2 carboxy-terminal fragments (CTFs). However, since the CTFs lack the extracellular domain that drives dimerization and subsequent activation of full-length HER2, they are in principle expected to be inactive. Here we present evidence that at low expression levels one of these fragments, 611-CTF, activated multiple signaling pathways because of its unanticipated ability to constitutively homodimerize. A transcriptomic analysis revealed that 611-CTF specifically controlled the expression of genes that we found correlated with poor prognosis in breast cancer. Among the 611-CTF-regulated genes were several that previously have been linked to metastasis, including MET, EPHA2, MMP1, IL11, ANGPTL4 and different Integrins. Transgenic mice overexpressing HER2 in the mammary gland develop tumors only after acquisition of activating mutations in the transgene. In contrast, we show that expression of 611-CTF led to development of aggressive and invasive mammary tumors without the need for mutations. These results demonstrate that 611-CTF is a potent oncogene capable of promoting mammary tumor progression and metastasis.
A naturally occurring HER2 carboxy-terminal fragment promotes mammary tumor growth and metastasis.
Cell line, Time
View Samples