This SuperSeries is composed of the SubSeries listed below.
Human oocytes reprogram somatic cells to a pluripotent state.
Specimen part
View SamplesThe exchange of the oocyte's genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cell types affected in degenerative human diseases. Such cells, carrying the patient's genome, might be useful for cell replacement. Here we report that the development of human oocytes activated after genome exchange invariably arrests at the late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, they efficiently develop to the blastocyst stage. Human stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies the removal of the oocyte genome as the primary cause of developmental failure after genome exchange. Future work should focus on the critical elements that are associated with the human oocyte genome.
Human oocytes reprogram somatic cells to a pluripotent state.
Specimen part
View SamplesThe exchange of the oocytes genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cell types affected in degenerative human diseases. Such cells, carrying the patients genome, might be useful for cell replacement. Here we report that the development of human oocytes activated after genome exchange invariably arrests at the late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, they efficiently develop to the blastocyst stage. Human stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies the removal of the oocyte genome as the primary cause of developmental failure after genome exchange. Future work should focus on the critical elements that are associated with the human oocyte genome.
Human oocytes reprogram somatic cells to a pluripotent state.
Specimen part
View SamplesPreviously, we constructed a coculture model to analyze the effect of macrophages on intestinal epithelial cells, and found that TNF-a secreted from human macrophage-like THP-1 cells induced cell damage to intestinal epithelial Caco-2 cells (Exp.Cell.Res. 2006, 312(19):3909-19). In this study, we present activation of NF-kB in Caco-2 cells within 15 min after coculturing. To reveal how TNF-a secreted from THP-1 cells affects Caco-2 cells in an early stage of coculture, we exhaustively analyzed the changes of gene expression in Caco-2 cells cocultured with THP-1 cells over the time periods of 0, 1, 3, 6, 24, and 48 h by using a DNA microarray. Differentially expressed genes extracted with maSigPro demonstrated that IEX-1 was the lowest p-value gene, that is, the most significantly changed gene among the up-regulated genes. The genes expressed in a similar pattern to IEX-1 involved immunity, apoptosis, and protein kinase cascade. These findings suggest that the stimuli of TNF-a from THP-1 cells activates NF-kB, leading induction of various gene expression. This pattern of gene expression indicates that not only early defense response but also cell death occurs at the same time, causing inflammatory condition.
Transient up-regulation of immunity- and apoptosis-related genes in Caco-2 cells cocultured with THP-1 cells evaluated by DNA microarray analysis.
Cell line, Time
View SamplesWe created a rat renal congestion model and investigated the effect of renal congestion on hemodynamics and molecular mechanisms. The inferior vena cava (IVC) between the renal veins was ligated by suture in male Sprague-Dawley rats to increase upstream IVC pressure and induce congestion in the left kidney only. Left kidney congestion reduced renal blood flow, glomerular filtration rate, and increased renal interstitial hydrostatic pressure. Tubulointerstitial and glomerular injury and medullary thick ascending limb hypoxia were observed only in the congestive kidneys. Molecules related to extracellular matrix expansion, tubular injury, and focal adhesion were upregulated in microarray analysis. Renal decapsulation ameliorated the tubulointerstitial injury. Electron microscopy captured pericyte detachment in the congestive kidneys. Transgelin and platelet-derived growth factor receptors, as indicators of pericyte-myofibroblast transition, were upregulated in the pericytes and the adjacent interstitium. With the compression of the peritubular capillaries and tubules, hypoxia and physical stress induce pericyte detachment, which could result in extracellular matrix expansion and tubular injury in renal congestion.
Pathophysiological and molecular mechanisms involved in renal congestion in a novel rat model.
Sex, Specimen part
View SamplesThe purpose of this experiment was to compare the gene expression pattern between wild-type and Trib1-deficient macrophages in response to LPS.
Enhanced TLR-mediated NF-IL6 dependent gene expression by Trib1 deficiency.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part, Subject
View SamplesEpigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2, TXK) in an independent cohort.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells.
Specimen part
View SamplesIt remains controversial whether human induced pluripotent stem cells (hiPSCs) are distinct from human embryonic stem cells (hESCs) in their molecular signatures and differentiation properties. We examined the gene expression and DNA methylation of 49 hiPSC and 10 hESC lines and identified no molecular signatures that distinguished hiPSCs from hESCs. Comparisons of the in vitro directed neural differentiation of 40 hiPSC and four hESC lines showed that most hiPSC clones were comparable to hESCs. However, in seven hiPSC clones, significant amount of undifferentiated cells persisted even after neural differentiation and resulted in teratoma formation when transplantated into mouse brains. These differentiation-defective hiPSC clones were marked by higher expression of several genes, including those expressed from long terminal repeats of human endogenous retroviruses. These data demonstrated that many hiPSC clones are indistinguishable from hESCs, while some defective hiPSC clones need to be eliminated prior to their application for regenerative medicine.
Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells.
Specimen part
View Samples