Innate lymphoid cells (ILCs) are a recently recognized heterogenous group of immune cells that are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor a-chain (CD25), IL-7 receptor a-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.
Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus.
Specimen part
View SamplesTo dissect the impact of nuclear and extranuclear mutant htt on the initiation and progression of disease, we generated a series of transgenic mouse lines in which nuclear localization (NLS) or nuclear export sequences (NES) have been placed N-terminal to the htt exon 1 protein carrying 144 glutamines. Our data indicate that the exon 1 mutant protein is present in the nucleus as part of an oligomeric or aggregation complex. Increasing the concentration of the mutant transprotein in the nucleus is sufficient for, and dramatically accelerates the onset and progression of behavioral phenotypes. Furthermore, nuclear exon 1 mutant protein is sufficient to induce cytoplasmic neurodegeneration and transcriptional dysregulation. However, our data suggests that cytoplasmic mutant exon 1 htt, if present, contributes to disease progression.
Contribution of nuclear and extranuclear polyQ to neurological phenotypes in mouse models of Huntington's disease.
No sample metadata fields
View SamplesHuntingtons disease (HD) is a neurodegenerative disorder that is associated with the deposition of proteinaceous aggregates in the brains of HD patients and mouse models. Previous studies have suggested that wide-scale disruption of protein homeostasis occurs in protein folding diseases. Protein homeostasis can be maintained by activation of the heat shock response (HSR) via the transcription factor heat shock factor 1 (HSF1), the pharmacological activation of which can be achieved by Hsp90 inhibition and has been demonstrated to be beneficial in cell and invertebrate models of HD. Whether the HSR is functional in HD and whether its activation has therapeutic potential in mammalian HD models is currently unknown. To address these issues, we used a novel, brain penetrant Hsp90 inhibitor to activate the HSR in brain after systemic administration. Microarrays, quantitative PCR and western blotting showed that the HSR becomes impaired with disease progression in two mouse models of HD and that this originates at the level of transcription.
Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease.
Sex, Age, Specimen part, Treatment
View SamplesMultiple division cycles without growth are a characteristic feature of early embryogenesis. The female germline deposits proteins and RNAs into oocytes to support these divisions, which lack many of the quality control mechanisms operating in somatic cells undergoing growth. How the composition of the oocyte maternal load is regulated to ensure its ability to support early embryogenesis is not known. Here we describe a small RNA-Argonaute pathway, operating in the C. elegans germline, that ensures early embryonic divisions by employing catalytic slicing activity to broadly tune, instead of silence, germline gene expression. Misregulation of one target, a kinesin-13 microtubule depolymerase, underlies a major embryonic phenotype associated with pathway loss. Tuning of target expression is guided by small RNA density, which must ultimately be related to target sequence. Thus, C. elegans employs a single catalytic Argonaute for small RNA-mediated tuning of the mRNA levels of germline-expressed genes that support early embryogenesis. Overall design: mRNA profiling of 2 replicates each for 3 genotypes of adult-stage C. elegans worms
A Small RNA-Catalytic Argonaute Pathway Tunes Germline Transcript Levels to Ensure Embryonic Divisions.
Specimen part, Cell line, Subject
View SamplesSTAT5A and STAT5B proteins belong to the family of signal transducers and activators of transcription. They are encoded by 2 separate genes with 91% identity in their amino acid sequences. Despite their high degree of conservation, STAT5A and STAT5B exert non-redundant functions, resulting at least in part from differences in target gene activation. To better characterize the differential contribution of STAT5A and STAT5B in gene regulation, we performed single or double knock-down of STAT5A and STAT5B using small interfering RNA. Subsequent gene expression profiling and RT-qPCR analyses of IL-3-stimulated Ba/F3-beta cells led to the identification of putative novel STAT5 target genes. Chromatin immunoprecipitation assays analyzing the corresponding gene loci identified unusual STAT5 binding sites compared to conventional STAT5 responsive elements. Some of the STAT5 targets identified are upregulated in several human cancers, suggesting that they might represent potential oncogenes in STAT5-associated malignancies.
In vivo identification of novel STAT5 target genes.
No sample metadata fields
View SamplesThese data provide scientific information to understand the mechanism of action of lapatinib resistance in HER2-positive patients and to test the combination of HER2-targeted agents and GSK1363089 (foretinib) in the clinic by using an acquired lapatinib-resistant cell line.
Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL.
Specimen part, Cell line, Treatment
View Samplesgene expression study on brain and lung under Dip2a regulation to better understand the role of Dip2a gene during mice brain and lung development.
Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9.
Sex, Specimen part, Cell line
View SamplesWe sought to determine whether Ldh activity in SCC tumors is a marker of the cell type from which these cells arise, or a key metabolic activity important for tumor initiation or progression. Here we show that genetic abrogation of Ldh enzyme activity in HFSC-mediated tumorigenesis had no effect on tumor number, time to tumor formation, tumor proliferation, epithelial to mesenchymal transition in tumors, gene expression in tumors, tumor pathology, or the immune response to tumors. Overall design: Examination of mRNA profile of five LDHA knockout mice vs five wild type (WT) mice using Illumina HiSeq2500.
Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.
No sample metadata fields
View Samples