wt1a:GFP labels a population of subepicardial cells in the uninjured ventricle. Here we compare the expression profile of wt1a:GFP-positive cells to the rest of the cells of the ventricle. Overall design: Four paired biological replicates of wt1a:GFP-positive and wt1a:GFP-negative cells obtained from pools of 3-5 zebrafish heart ventricles.
Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart.
No sample metadata fields
View SamplesContrary to mammals, zebrafish regenerate their heart upon cryoinjury of the cardiac ventricular apex. Regeneration is preceed by a fibrotic response. To understand the contribution of different cell sources to zebrafish cardiac fibrosis we performed an RNASeq including endocardial kdrl:mCherry cells from an uninjured heart, and activated endocardial kdrl:mCherry cells, postnb:citrine fibroblasts and the rest of the cells at 7 days post injury. Overall design: Three to six biological replicates consisting of different cell types obtained from the ventricular apex.
Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart.
No sample metadata fields
View SamplesContrary to mammals, zebrafish regenerate their heart upon cryoinjury of the ventricular apex. Regeneration is preceeded by a transient fibrotic response. Here we compare the expression profile of fibroblast-like cells at 7 different time points of fibrosis resolution. Using a postnb:CreERT2; ubb:loxP-GFP-loxP-mCherrycz1701 double transgenic line, we permanently label cells that expressed postnb at 3 and 4 days post injury (dpi) with mCherry by administration of 4-OHT. We sequenced mCherry-labelled cells obtained from the ventricular apex at 7 and 60 dpi. Overall design: postnb-derived cells were FAC sorted from a pool of three to five biological samples. Four pools were collected at 7 dpi and three at 60 dpi. RNA was extracted from those pools and further processed for transcriptome analysis.
Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart.
No sample metadata fields
View SamplesIn vertebrates, the heart has two main layers of cardiac muscle, a peripheral compact layer and an internal trabecular layer. Little is known on the differerences in gene expression between both layers. In zebrafish the outer layer is named cortical layer and the internal also trabecular layer. Here we used a double transgenic line labelling with GFP tbx5-positive cells and cardiomyoctes with nuclear DsRed (nucDsRed) to distinguish cortical from trabecular myocardium. Then, we compared the transcriptome of trabecular and cortical myocardium in the adult zebrafish. We describe that Tbx5a is a good marker of trabecular myocardium. Overall design: Four paired biological replicates consisting on Tbx5-positive and Tbx5-negative adult zebrafish ventricular cardiomyocytes were analysed by RNA-seq to compare their transcriptomic profiles.
Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration.
No sample metadata fields
View SamplesGene expression profiles of paired normal adjacent mucosa and tumor samples from 98 individuals and 50 healthy colon mucosae, were obtained through Affymetrix Human Genome U219 Arrays. This dataset is in the context of the COLONOMICS project and to query additional information you can visit the project website www.colonomics.org.
Discovery and validation of new potential biomarkers for early detection of colon cancer.
Sex, Age, Disease, Subject
View SamplesThe gastrointestinal (GI) tract can have significant impact on the regulation of the whole body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analyses in different parts of the GI tract of two obese mouse models: ob/ob and high-fat diet (HFD) fed mice. Compared to their lean controls, both obese mouse groups had significant amount of gene expression changes in the stomach (ob/ob: 959; HFD: 542), much more than the number of changes in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes and insulin resistance. In addition, the gene expression profile strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity.
Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice.
Specimen part
View SamplesWe used Affymetrix microarrays to investigate gene expression changes in the liver of wild-type C57BL-6 mice exposed to a high-fat diet that might have been caused by the oral consumption of the probiotic B. pseudocatenulatum CECT 7765.
Hepatic molecular responses to Bifidobacterium pseudocatenulatum CECT 7765 in a mouse model of diet-induced obesity.
Specimen part
View SamplesIdentification of TLR4 as one of the most abundant RNA species in pericytes with respect to MSC, and corroboration of TLR4 expression on the cell surface, led us to obtain a comprehensive overview of the expression program of lipopolysaccharide (LPS) stimulated pericytes. Microarray analyisis demonstrated the significant upregulation of 76 annotated genes including transcripts for adhesion molecules, inflammation mediators, pro-angiogenic factors, transcription factors and anti-apoptotic proteins.
Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes.
Specimen part, Treatment
View SamplesPericytes and mesenchymal stem cells (MSC) are ontogenically related, and in fact no phenotypic differences were observed by flow cytometry using a panel of surface antigen markers. Global gene expression profiles of human pericytes and MSC revealed that 43 genes were expressed more than 10 fold in pericytes as compared to MSC.
Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes.
Specimen part
View SamplesBACKGROUND: p53 is an important tumor suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated.
A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine.
Specimen part
View Samples