Genes specific to Sox9+ pancreatic progenitors were identified by comparing the gene expression in embryonic and adult Sox9+ cells.
A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation.
Specimen part
View SamplesMalignant carcinomas that recur following therapy are typically de-differentiated and multi-drug resistant (MDR). De-differentiated cancer cells acquire MDR by upregulating reactive oxygen species (ROS)-scavenging enzymes and drug efflux pumps, but how these genes are upregulated in response to de-differentiation is not known. Here, we examine this question by using global transcriptional profiling to identify ROS-induced genes that are already upregulated in de-differentiated cells, even in the absence of oxidative damage.
De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state.
Specimen part
View SamplesMyc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis.
Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state.
Specimen part
View SamplesMyc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis.
Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state.
Specimen part
View SamplesMyc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis.
Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state.
No sample metadata fields
View SamplesCarcinoma cells can acquire key malignant traits by reprogramming their differentiation state via an epithelial-to-mesenchymal transition (EMT). Cancer cells that undergo EMT become invasive and resist a wide range of therapies including most chemotherapy drugs and radiation. Such cells are also able to efficiently seed primary and metastatic tumors, making them functionally indistinguishable from tumor-initiating or cancer stem-like cells (TICs or CSCs). Therefore, there is significant interest in finding vulnerabilities of cancer cells that have undergone EMT.
Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress.
Cell line, Treatment
View SamplesSpinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearence of plateau potentials in motor neurons and the development of spasticity after spinalizaion. To understand the moleclar mechanism behind this pheneomona we examined the transcriptional response of the motor neurons after spinal cord injury as it progress over time.
Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.
Sex, Specimen part
View SamplesThe present study was designed to test the hypothesis that limited growth of the fetal liver in the model of maternal fasting is independent of well-characterized signaling mechanisms that are known to regulate somatic growth in adult animals.
Regulation of fetal liver growth in a model of diet restriction in the pregnant rat.
Specimen part, Treatment
View SamplesSequencing of 5' ends of RNA molecules from control and exosome-depleted HeLa-S3 cells. Overall design: CAGE library construction from RNA extracted from control and exosome-depleted cells.
Nuclear stability and transcriptional directionality separate functionally distinct RNA species.
No sample metadata fields
View Samples