The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when MED5/15 or MED15/16 are inactivated together.
Functional studies of the yeast med5, med15 and med16 mediator tail subunits.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Specimen part, Cell line, Treatment
View SamplesAnalysis of the influence of celiac disease-associated bacteria and gluten on intestinal epithelial cells
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Cell line, Treatment
View SamplesAnalysis of the influence of celiac disease-associated bacteria and gluten on intestinal epithelial cells
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Cell line, Treatment
View SamplesAnalysis of the influence of celiac disease-associated bacteria on intestinal epithelial cells
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Cell line, Treatment
View SamplesAnalysis of role of small intestinal intraepithelial lymphocytes (IELs) in the immunopathology of celiac disease
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Specimen part
View SamplesAnalysis of role of small intestinal epithelial cells (IECs) in the immunopathology of celiac disease
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Specimen part
View SamplesGenes specific to Sox9+ pancreatic progenitors were identified by comparing the gene expression in embryonic and adult Sox9+ cells.
A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation.
Specimen part
View SamplesThe hematopoietic microenvironment consists of non-hematopoietic derived stromal elements and hematopoietic derived monocytes and macrophages which interact and function together to control the proliferation and differentiation of early blood-forming cells. Two human stromal cell lines (HS-5 and HS-27a) representing distinct functional components of this microenvironment have been extensively characterized and shown to influence monocyte gene expression. This series of gene expression profiles is intended to extend the previous studies and identify which gene expression changes may require cell-cell contact or occur in the stromal cells as a result of monocyte influence;or in the monocytes as a result of stormal influences.
Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes.
Sex
View SamplesThe bone marrow microenvironment is a complex mixture of cells that function in concert to regulate hematopoiesis. Cellular components include fixed nonhematopoietic stromal elements as well as monocytes and resident macrophages, which are derived from the hematopoietic stem cells. Although these monocyte-lineage cells are reported to modify stromal cell function, the reverse also occurs. Given the secretory capability of the monocyte/macrophage and their various potential functions, it is not surprising that stromal cells contained within a particular niche can modify monocyte gene expression and functional maturation.
Functionally and phenotypically distinct subpopulations of marrow stromal cells are fibroblast in origin and induce different fates in peripheral blood monocytes.
Sex
View Samples