Here we compared the expression of an engineered kidney tissue, created by recombining an in vitro budded Wolffian duct with fresh E13 metanephric mesenchyme, with that of three in vivo rat embryonic kidney timepoints (E13, E18, and week 4)
Staged in vitro reconstitution and implantation of engineered rat kidney tissue.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.
Specimen part, Disease
View SamplesThis study used tumour and paired normal samples from 28 Szary Syndrome (SS) patients to define recurrent regions of chromosomal aberrations. Our data identified recurrent losses of 17p13.2-p11.2 and 10p12.1-q26.3 occurring in 71 and 68% of cases respectively; common gains were detected for 17p11.2-q25.3 (64%) and chromosome 8/8q (50%). Moreover, we identified novel genomic lesions recurring in more than 30% of tumours: loss of 9q13-q21.33 and gain of 10p15.3-10p12.2. In the Szary Syndrome cases analysed, we could find several small and few large Uniparental Disomies involving interstitial or telomeric regions of LOH occurring mainly for chromosome 10 and to a lesser extent for chromosome 9 and 17. In the attempt to correlate Copy Number data and clinical parameters we find a relationship between complex pattern of chromosomal aberrations, involving at least three recurrent Copy Number alterations, and shorter survival. Integrating mapping and transcriptional data we were able to identify a total of 113 deregulated transcripts in aberrant chromosomal regions that included cancer related genes such as members of the NF-kB pathway (BAG4, BTRC, NKIRAS2, PSMD3, TRAF2) that might explain its constitutive activation in CTCL. Matching this list of genes with those discriminating patients with different survival times we identify several common candidates that might exert critical roles in Szary Syndrome, like BUB3 and PIP5K1B.
Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.
Specimen part, Disease
View SamplesRegeneration of skeletal muscle is dependent on the function of tissue-resident muscle stem cells (MuSC), known as satellite cells. MuSC dysfunction is central to muscle pathophysiology, including in age-associated loss of muscle regenerative capacity and congenital disorders such as Duchenne muscular dystrophy. Despite the central role of satellite cells in muscle regeneration, the signals controlling the balance between muscle stem cell quiescence, proliferation, and differentiation remain incompletely understood. Knowledge of the signals that maintain a quiescent state is particularly lacking, yet such cues are crucial to maintaining a stem cell reservoir that can meet the needs of regeneration throughout life. Here we identify Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent and essential trans-acting regulator of satellite cell quiescence. Key to this discovery is the development of a novel in vivo imaging-based screening strategy allowing identification of proteins that do not induce in vitro proliferation, but instead maintain MuSCs in a non-mitotic state, poised for rapid robust expansion upon transplantation. We demonstrate that OSM induces reversible exit from the cell cycle and induction of a global transcriptional program significantly enriched within a newly established satellite cell quiescence signature. Genetic ablation of the OSM receptor in mice demonstrates that signaling via OSM/R is essential for maintenance of satellite cell quiescence, and for proper skeletal muscle regeneration in vivo. Given that aberrant activation and exhaustion of stem cells is seen in a variety of disorders, OSM constitutes an attractive therapeutic target in muscle disease states.
Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M.
Age, Specimen part
View SamplesThe majority of sporadic colorectal cancer cases are initiated by mutations in the APC tumor suppressor gene leading to constitutive activation of the Wnt/b-catenin signaling pathway and adenoma formation. Several pre-clinical models carrying germline mutations in the endogenous mouse Apc tumor supressor gene have been generated and their phenotype characterized. The predisposition of these mouse models to multiple intestinal adenomas closely resembles the FAP phenotype at the molecular, cellular and phenotypic level and may prove valuable to elucidate the molecular and cellular mechanisms underlying colorectal tumorigenesis. The goal of this study is to establish an expression signature characteristic of intestinal tumors characterized by the inactivation of Apc.
Cross-species comparison of human and mouse intestinal polyps reveals conserved mechanisms in adenomatous polyposis coli (APC)-driven tumorigenesis.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi.
Age, Specimen part, Treatment
View SamplesMacrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signalling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomics and proteomics approaches. We identified a common pattern of genes transcriptionally regulated that overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member, CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine, TNF. Cd180-silenced cells produced increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases the CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi.
Specimen part, Treatment
View SamplesUnderstanding the molecular underpinnings of cancer is of critical importance to developing targeted intervention strategies. Identification of such targets, however, is notoriously difficult and unpredictable. Malignant cell transformation requires the cooperation of a few oncogenic mutations that cause substantial reorganization of many cell features and induce complex changes in gene expression patterns. Genes critical to this multi-faceted cellular phenotype thus only have been identified following signaling pathway analysis or on an ad hoc basis. Our observations that cell transformation by cooperating oncogenic lesions depends on synergistic modulation of downstream signaling circuitry suggest that malignant transformation is a highly cooperative process, involving synergy at multiple levels of regulation, including gene expression. Here we show that a large proportion of genes controlled synergistically by loss-of-function p53 and Ras activation are critical to the malignant state. Remarkably, 14 among 24 such 'cooperation response genes' (CRGs) were found to contribute to tumor formation in gene perturbation experiments. In contrast, only one in 14 perturbations of genes responding in a non-synergistic manner had a similar effect. Synergistic control of gene expression by oncogenic mutations thus emerges as an underlying key to malignancy and provides an attractive rationale for identifying intervention targets in gene networks downstream of oncogenic gain and loss-of-function mutations.
Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype.
No sample metadata fields
View SamplesUnder hypoxic conditions, nitroimidazole compounds accumulate in cells in their reduced form and have oxygen-mimetic effects, serving as markers of hypoxia and radiosensitizers. The full potential of their bioreductive metabolism, including cytotoxicity for cancer stem cells, has not been sufficiently explored, however. Here we investigated the changes in gene expression induced by treatment with 2-nitroimidazole doranidazole in murine glioma stem cells, under normoxic or hypoxic conditions.
2-Nitroimidazoles induce mitochondrial stress and ferroptosis in glioma stem cells residing in a hypoxic niche.
Specimen part
View SamplesIn this study we plan to compare the profiles of control sample (cultured podocytes) with the Exoc5 knock down in cutured podocytes to examine the differentially expressed genes. Overall design: We hope to identify the genes that are downregulated on knocking down Exoc5 in cultured human podocytes cells
Disruption of the exocyst induces podocyte loss and dysfunction.
Subject
View Samples