E12.5 AV cushion and E17.5 AV valve from wild-type FVB/N mice and in vitro cultured MC3T3 cells
Shared gene expression profiles in developing heart valves and osteoblast progenitor cells.
No sample metadata fields
View SamplesWe used microarrays to identify genes regulated during oncolytic HSV infection. Oncolytic herpes simplex viruses (oHSV) are promising anticancer therapeutics. We sought to identify alterations in gene expression during oHSV infection of human cancer cells. Human malignant peripheral nerve sheath tumor (MPNST) cells were infected with G207, an ICP34.5-deleted oHSV previously evaluated in clinical trials. G207-infected cells demonstrated massive degradation of cellular mRNAs, while a subset were upregulated. A gene signature of 21 oHSV-induced genes contained 7 genes known to be HSV-induced. Go ontology classification revealed that a majority of upregulated genes are involved in Jak/STAT signaling, transcriptional regulation, nucleic acid metabolism, protein synthesis and apoptosis. Ingenuity-defined functional networks highlighted nodes for AP-1 subunits and interferon signaling via STAT1, SOCS1, SOCS3 and RANTES. Upregulation of SOCS1 correlated with sensitivity of MPNST lines to G207 and depletion of SOCS1 reduced virus replication >1-log. The transcriptome of oHSV-induced genes may predict oncolytic efficacy and provides rationale for next generation oncolytics.
Molecular analysis of human cancer cells infected by an oncolytic HSV-1 reveals multiple upregulated cellular genes and a role for SOCS1 in virus replication.
No sample metadata fields
View SamplesDifferential gene expression profiles of neurospheres derived from different regions of the adult brain.
Environmental impact on direct neuronal reprogramming in vivo in the adult brain.
Specimen part
View SamplesIn an ongoing translational research program involving microarray-based expression profiles in pediatric septic shock, we have now conducted longitudinal studies focused on the temporal expression profiles of canonical signaling pathways and gene networks. Genome-level expression profiles were generated from whole blood-derived RNA samples of children with septic shock (n = 30 individual patients) corresponding to days 1 and 3 of admission to the pediatric intensive care unit. Based on sequential statistical and expression filters, day 1 and day 3 of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to normal control patients. Venn analysis demonstrated 239 unique genes in the day 1 data set, 598 unique genes in the day 3 data set, and 1,906 genes common to both data sets. Analyses targeted toward derivation of biological function from these data sets demonstrated time-dependent, differential regulation of genes involved in multiple canonical signaling pathways and gene networks primarily related to immunity and inflammation. Notably, multiple and distinct gene networks involving T cell- and MHC antigen-related biological processes were persistently downregulated from day 1 to day 3. Further analyses demonstrated large scale and persistent downregulation of genes corresponding to functional annotations related to zinc homeostasis. These data represent the largest reported cohort of patients with septic shock, which has undergone longitudinal genome-level expression profiling. The data further advance our genome-level understanding of pediatric septic shock and support novel hypotheses that can be readily tested at both the experimental and translational levels.
Genome-level longitudinal expression of signaling pathways and gene networks in pediatric septic shock.
No sample metadata fields
View SamplesNormal children, children with SIRS, children with sepsis, and children with septic shock.
Genomic expression profiling across the pediatric systemic inflammatory response syndrome, sepsis, and septic shock spectrum.
No sample metadata fields
View SamplesRationale: We previously generated genome-wide expression data in children with septic shock, based on whole blood-derive RNA, having the potential to lead the field into novel areas of investigation.
Validating the genomic signature of pediatric septic shock.
Sex
View SamplesGoal of the experiment: To identify correlated genes, pathways and groups of patients with systemic inflammatory response syndrome and septic shock that is indicative of biologically important processes active in these patients.
Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome.
No sample metadata fields
View SamplesTo identify differences in gene expression between peptidylprolyl isomerase F (cyclophilin D; Ppif)-null hearts and WT control hearts.
Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice.
Age, Specimen part
View SamplesSamples were taken from surgically resected tumor specimens from patients with proximal colon cancer. The expression profiles were determined using the Affymetrix GeneChip Human Exon 1.0 ST Array version 2. APC gene mutation status was determined using Sanger sequencing. A classifier for APC mutation status was trained using these expression data.
Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer.
Specimen part
View SamplesRNA-Seq data from intestinal tumors of ApcMin/+/Macrod2-/-,ApcMin/+/Macrod2-/+ and ApcMin/+/Macrod2+/+ mice (6 tumors per group) Overall design: Examine mRNA expression level changes between tumors by Macrod2 genotype
<i>MACROD2</i> Haploinsufficiency Impairs Catalytic Activity of PARP1 and Promotes Chromosome Instability and Growth of Intestinal Tumors.
Sex, Specimen part, Cell line, Subject
View Samples