The biology underlying nodal metastasis is poorly understood. Transcriptome profiling has helped to characterize both primary tumors seeding nodal metastasis and the metastasis themselves. The interpretation of these data, however, is not without ambiguities. Here we profiled the transcriptomes of 17 papillary thyroid cancer (PTC) nodal metastases, associated primary tumors and primary tumors from N0 patients. We also included patient-matched normal thyroid and lymph node samples as controls to address some limits of previous studies. We found that the transcriptomes of patient-matched primary tumors and metastases were more similar than of unrelated metastases/primary pairs, a result also reported in other organ systems, and that part of this similarity reflected patient background. We found that the comparison of patient-matched primary tumors and metastases was heavily confounded by the presence of lymphoid tissues in the metastasis samples. An original data adjustment procedure was developed to circumvent this problem. It revealed a differential expression of stroma-related gene expression signatures also regulated in other organ systems. The comparison of N0 vs. N+ primary tumors uncovered a signal irreproducible across independent PTC datasets. This signal was also detectable when comparing the normal thyroid tissues adjacent to N0 and N+ tumors, suggesting a cohort specific bias also likely to be present in previous studies with similar statistical power. Classification of N0 vs. N+ yielded an accuracy of 63%, but additional statistical controls not presented in previous studies, revealed that this is likely to occur by chance alone. To address this issue, we used large datasets from The Cancer Genome Atlas and showed that N0 vs. N+ classification rates could not be reached randomly for most cancers. Yet, it was significant, but of limited accuracy (<70%) for thyroid, breast and head and neck cancers.
Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer.
Sex
View SamplesTranscripts upregulated or downregulated by HOXB7-MEK signaling were identified for use on the microarray using the Affymetrix GeneChip WT PLUS Reagent Kit in comparison with HOXB7-knockdown S2-013 cells that were transfected with rescue-HOXB7 plasmid and treated with MEK inhibitor, and HOXB7-knockdown S2-013 cells that were transfected with rescue-HOXB7 plasmid but not treated with MEK inhibitor.
The transcription factor HOXB7 regulates ERK kinase activity and thereby stimulates the motility and invasiveness of pancreatic cancer cells.
Specimen part
View SamplesWe established a novel in vitro tissue culture system (named VISUAL), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons
Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.
Age, Specimen part, Time
View SamplesWe established a novel in vitro tissue culture system (named VISUAL), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons
Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.
Specimen part, Time
View SamplesBBF2H7 (BBF2 human homolog on chromosome 7), an ER-resident basic leucine zipper transcription factor, is activated in response to ER stress and abundantly expresses in chondrocytes. While BBF2H7 is widely expressed in many tissues and organs, the most intense signals were detected in the proliferating zone of the cartilage. We compared gene expressions in primary cultured chondrocytes prepared from rib cartilage between WT and BBF2H7-/- mice at E18.5. Primary cultured chondrocytes were prepared from E18.5 rib cartilage of WT and BBF2H7-/- mice. Chondrocytes were isolated using 0.2% collagenase D (Roche) after adherent connective tissue was removed by 0.2% trypsin (Sigma) and collagenase pretreatment. Isolated chondrocytes were maintained in -MEM (Gibco) supplemented with 10% FCS and 50 g/mL ascorbic acid. Adenovirus vectors expressing the mouse p60 BBF2H7 (1-377 aa, BBF-N) were constructed with the AdenoX Expression system (Clontech), according to the manufacturers protocol. The cells were infected with adenoviruses 30 h before analysis.
Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis.
Specimen part
View SamplesInvestigation of whole genome gene expression level changes in OASIS KO calvaria compared to wild-type calvaria.
Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation.
Specimen part
View SamplesWe have previously established an in vitro tissue culture system (named VISUAL; Kondo et al., 2016), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons
BES1 and BZR1 Redundantly Promote Phloem and Xylem Differentiation.
Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells.
Specimen part, Cell line, Treatment, Time
View SamplesGene expression profiles of E14 embryonic stem cells (ESCs) before and after treatment with low levels of the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and sodium butyrate (NaBu).
Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells.
Specimen part, Cell line, Treatment
View SamplesGene expression profiles of E14 embryonic stem cells (ESCs) before and after treatment with low levels of the histone deacetylase (HDAC) inhibitor valproic acid (VPA).
Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells.
Specimen part, Cell line, Treatment
View Samples