Multiple sclerosis (MS) is a neurodegenerative disease with a presumed autoimmune component. Expression profiling in immune cells can therefore be used in order to identify genes and pathways involved in MS pathogenesis.
Systematic review of genome-wide expression studies in multiple sclerosis.
Specimen part, Disease, Disease stage
View SamplesmiRNA high-throughput sequencing was used to investigate endometriosis lesion-specific miRNA expression profiles by comparing a set of paired samples of peritoneal endometriotic lesions and matched healthy surrounding tissue together with eutopic endometrium of the same patients. We found that miRNAs of surrounding peritoneal tissue mask most of the miRNA expression differences that could originate from endometriotic tissue and thus only miRNAs with significantly different levels in the endometriotic lesions compared to peritoneal tissue were detected. According to the results of this study, two miRNAs – miR-34c and miR-449a showed remarkably higher expression in lesions compared to healthy tissue. Overall design: Eleven tissue samples (two endometria, five peritoneal lesions and four matched adjacent normal-appearing tissues) were analysed from two patients with a histologically confirmed diagnosis of moderate-severe endometriosis (III-IV stage)
High-throughput sequencing approach uncovers the miRNome of peritoneal endometriotic lesions and adjacent healthy tissues.
No sample metadata fields
View SamplesCell-type specific RNA-seq is a powerful approach for unravelling molecular processes of endometrial receptivity, and to detect novel sensitive biomarkers of receptivity. Overall design: 16 paired endometrial tissue samples from pre-receptive (defined as LH2) and receptive phase endometria (defined as LH8) from Estonia (defined as E) and Spain (defined as S) were collected. CD9-positive epithelial cells (defined as epithelium) and CD13-positive stromal cells (defined as stroma) were isolated with fluorescent activated cell sorting (FACS) and full transcriptome analysis was performed by RNA-seq.
Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers.
Specimen part, Subject
View SamplesWe report that the phytoestrogen genistein acts as a tissue-specific androgen receptor modulator in mouse using a novel androgen reporter mouse line and gene expression profiling. Genistein is a partial androgen agonist/antagonist in prostate, brain, and testis but not in skeletal muscle or lung. Gene expression profiling has been done from prostates of intact and castrated male mice treated with genistein or vehicle. Gene expression profiling was also done from prostates of estradiol-treated intact male mice.
The phytoestrogen genistein is a tissue-specific androgen receptor modulator.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.
Specimen part, Cell line
View SamplesOne of the long-standing goals in the field has been to establish a culture system that would allow maintenance of HSC properties ex vivo. In the absence of such system, the ability to model human hematopoiesis in vitro has been limited, and there has been little progress in the expansion of human HSCs for clinical application. To that end, we defined a mesenchyml stem cell co-culture system for expansion of clonally multipotent human HSPCs that are protected from apoptosis and immediate differentiation, and retain the HSPC phenotype. By performing a genome-wide gene expression analysis of purified HSPCs isolated at different stages of co-culture, we asked at the molecular level, to what degree hematopetic stem cell properties can be preserved during culture. This temporal gene expression data from in vivo derived- and ex vivo expanded human HSPCs will serve as a resource to identify novel regulatory pathways that control HSC properties, and to develop clinically applicable protocols for HSC expansion.
Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.
Specimen part
View SamplesOne of the long-standing goals in the field has been to establish a culture system that would allow maintenance of HSC properties ex vivo. In the absence of such system, the ability to model human hematopoiesis in vitro has been limited, and there has been little progress in the expansion of human HSCs for clinical application. To that end, we defined a mesenchymal stem cell co-culture system based on a monoclonal OP9 stromal cell line (OP9M2), for expansion of clonally multipotent human HSPCs that were protected from apoptosis and immediate differentiation, and retained the HSPC phenotype. To identify the supportive mechanisms, we performed a genome-wide gene expression analysis of OP9M2 stromal cells and compared the expression to a non-supportive stomal line (BFC012). This co-culture system provides a new, well-defined platform for studying mechanisms involved in HSC-niche interactions and protection of critical HSC properties ex vivo.
Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.
Specimen part, Cell line
View SamplesPulmonary hypertension is a frequent consequence of left heart disease and congestive heart failure (CHF) and causes extensive lung vascular remodelling which leads to right ventricular failure. Functional genomics underlying this structural remodelling are unknown but present potential targets for novel therapeutic strategies. We used microarrays to detail the gene expression underlying vascular remodeling in the pathogenesis of pulmonary hypertension and identified distinct classes of up-regulated genes during this process.
Mast cells promote lung vascular remodelling in pulmonary hypertension.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Medial HOXA genes demarcate haematopoietic stem cell fate during human development.
Specimen part
View SamplesThe derivation of functional, transplantable HSCs from an pluripotent stem cells in vitro holds great promise for clinical therapies, but is unachieved. In order to achieve full functionality of HSCs, it is vital to determine the extent to which PSCs can currently be differentiated to the HSC program in vitro and identify the remaining dysregulated genetic pathways.
Medial HOXA genes demarcate haematopoietic stem cell fate during human development.
Specimen part
View Samples