refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 23 results
Sort by

Filters

Technology

Platform

accession-icon GSE78066
Global gene expression changes during immune complex-induced neutrophil activation (wild type and Card9/ cells)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

--- Raw data of the Supplementary Table 1 of the Nature Communications article 'Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo'

Publication Title

Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE85240
Gene expression changes in stimulated and unstimulated Foxp1-deficient B cells.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Foxp1 is expressed throughout B cell development, but the physiological functions in mature B lymphocytes are unknown. We therefore evaluated differential gene expression in Foxp1-deficient B cells, with or

Publication Title

Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP097584
Mus musculus Raw sequence reads
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

T cell lymphoma

Publication Title

PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE70025
Oncogenic CARMA1 couples NF-B and -Catenin signaling in diffuse large B cell lymphomas
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Constitutive activation of the anti-apoptotic NF-B signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL) that is characterized by adverse survival. Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-B pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 mutants in the NF-B negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of -Catenin and its destruction complex consisting of APC, AXIN1, CK1 and GSK3 to oncogenic CARMA1. Recruitment of the -Catenin destruction complex was independent of CARMA1-BCL10-MALT1 (CBM) complex formation or constitutive NF-B activation and promoted the stabilization of -Catenin. Elevated -Catenin expression was detected in cell lines and biopsies from ABC DLBCL that rely on chronic BCR signaling. Increased -Catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF dependent transcriptional activation in response to WNT signaling. In conjunction with NF-B, -Catenin enhanced expression of immune suppressive IL-10 and repressed anti-tumoral CCL3, indicating that -Catenin may induce a favorable tumor microenvironment. Thus, parallel activation of NF-B and -Catenin signaling by gain-of-function mutations in CARMA1 can augment WNT stimulation and is required for maintaining high expression of distinct NF-B target genes and can thereby trigger cell intrinsic and extrinsic processes that promote DLBCL lymphomagenesis.

Publication Title

Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP077255
Vav proteins are key regulators of Card9 signaling for innate antifungal immunity
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Fungal infections are major causes of morbidity and mortality, especially in immunocompromised individuals. The innate immune system senses fungal pathogens through a family of Syk-coupled C-type lectin receptors (CLRs), which signal through the conserved immune adapter Card9. Although Card9 complexes are essential for antifungal defense in humans and mice, the mechanisms that couple CLR-proximal events to Card9 control are not well defined. Here, using a proteomic approach, we identified Vav proteins as key activators of the Card9 pathway. Vav1, Vav2 and Vav3 cooperate downstream of Dectin-1, Dectin-2 and Mincle to selectively engage Card9 for NF-?B control and proinflammatory gene transcription but are not involved in MAPK activation. Although Vav family members show functional redundancy, Vav1/2/3 triple-deficient cells are severely impaired for NF-?B and cytokine responses upon stimulation with CLR agonists or hyphae, and Vav1/2/3-/- mice phenocopy Card9-/- animals with extreme susceptibility to fungi and rapid mortality upon Candida albicans infection. In this context, Vav3 is the single most important Vav in mice, and a polymorphism in human VAV3 is associated with susceptibility to candidemia in patients. Our results reveal a molecular mechanism for CLR-mediated Card9 regulation that controls innate immunity to fungal infections. Overall design: RNA profiles of unstimulated or Curdlan-stimulated bone marrow-derived dendritic cells (BMDCs) from wild type (WT) and Vav1/2/3-/- (VAV KO) mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000.

Publication Title

Vav Proteins Are Key Regulators of Card9 Signaling for Innate Antifungal Immunity.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP200316
Gene expression from mouse models of B cell lymphomagenesis driven by gp130 signaling
  • organism-icon Mus musculus
  • sample-icon 62 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

This study examines the transcriptional changes invoked by activation of gp130 signaling in different mouse models of B cell lymphomagenesis. In order to study the in vivo effects of aberrant activity of IL-6/IL-6R/gp130-JAK/STAT3 signaling, we designed a transgene that allows conditional expression of L-gp130 by generating a ROSA26 knock-in mouse strain where compound L-gp130 and ZsGreen expression from the CAG promoter is prevented by a loxP- and a rox-flanked stop cassette. Total RNA extracted from purified B cells from young CD19Cre+/- ;L-gp130fl/+ and wildtype control mice was sequenced using unique molecular identifiers (UMI) in a paired end design where read1 corresponds to the cDNA and read2 contains the UMI. Furthermore, aging CD19Cre+/- ;L-gp130fl/+ animals developed tumors located predominantly in mesenteric lymph nodes. Infiltration of CD19;L-gp activated B cells was determined by Flow Cytometry and ZsGreen expression. Total RNA from tumors generally containing >60% ZsGreen+ cells was profiled as described above, for tumors with lower CD19;L-gp activated B cell content FACS was applied. In order to study the effects of activated IL-6/IL-6R/gp130-JAK/STAT3 signaling on Eµ-Myc-driven lymphomagenesis, CD19Cre;L-gp130fl;Eµ-Myc triple transgenic mice were generated and fetal liver hematopoietic stem/progenitor cell (FL-HSPC) grafts were transplanted into lethally irradiated syngeneic mice alongside FL-HSPC from CD19Cre;L-gp130f and Eµ-Myc control mice. Lastly, IL-6/IL-6R/gp130-JAK/STAT3 signaling was activated in the entire hematopoetic system using Vav1Cre resulting in Vav1Cre+/- ;L-gp130fl/+ animals. Independent of the time point of activation during hematopoietic and B cell differentiation, all Cre;L-gp compound mice succumbed to tumors of B cell origin. Overall design: Bulk gene expression data are presented for (i) purified B cells from wildtype control mice (n=6) and young CD19;L-gp mice (n=4), (ii) tumors detected in aging CD19;L-gp mice with a mature (n=11) and plasma cell phenotype (n=6), respectively, (iii) tumors arising in lethally irradiated syngeneic mice after transplantation of fetal liver hematopoietic stem/progenitor cells from CD19;L-gp;Myc (n=9), CD19;L-gp (n=7) and Eµ-Myc (n=9) mice, respectively, and (iv) malignant B cells from Vav1;L-gp mice (n=13).

Publication Title

Activated gp130 signaling selectively targets B cell differentiation to induce mature lymphoma and plasmacytoma.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE10532
Comparison of CpG and TDB induced activation patterns in macrophages.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Bone marrow derived macrophages 1 M CpG or 20 g/ml TDB, an analogon to the mycobacterial cord factor TDM for 8h, 24h, 48h and 72h respectively.

Publication Title

Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10530
Card9 dependent activation of macrophages by TDB
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Bone marrow derived macrophages from wt and card9 KO mice were stimulated with CpG, Curdlan or TDB, an analogon to the mycobacterial cord factor TDM for 48h, respectively.

Publication Title

Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51631
IKK promotes intestinal tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Depending on the tumor type IB kinase (IKK) can act as tumor promoter or tumor suppressor in various malignancies. Here we demonstrate a key function of IKK in the suppression of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKK kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of IFN expressing M1-like myeloid cells. In IKK mutant mice M1-like polarization is not controlled in a cell autonomous manner but depends rather on the interplay of both IKK mutant tumor epithelia and immune cells.

Publication Title

IKKα promotes intestinal tumorigenesis by limiting recruitment of M1-like polarized myeloid cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE79040
RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Examination of gene expression patterns in lineage negative FLT3-ITD and pMIG-transduced BM cells via microarray study.

Publication Title

RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact