This SuperSeries is composed of the SubSeries listed below.
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesExperiment 1 - miR-155 and miR-199 Phenotype
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesExperiment 2 - MiRNA mimics have a length and passenger strand specific effect
Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner.
Cell line
View SamplesIn this study, zebrafish ZF4 and PAC2 cells were seeded in 0.5% or 1% FCS, respectively, and grown to 85% confluence and subsequently cultured for 24 hours without serum. Then they were treated with either medium without serum or medium with serum (ZF4 in 10% FCS and PAC2 in 15% FCS).After 6 hours, RNA was extracted from the cells and analyzed using the Affymetrix GeneChip Zebrafish Genome Array (GeneChip 430). There are 15502 oligonucleotide sets on each Affymetrix chip, 14895 of which can be linked to a UniGene assignment (Unigene data set 06-12-2005).
Genetic and transcriptome characterization of model zebrafish cell lines.
Cell line, Compound
View SamplesMaternal obesity during the pre-implantation period leads to a pro-inflammatory milieu in the ovaries. We conducted a global transcriptomic profiling in ovaries from TEN fed rats during the pre-implantation period. Microarray analysis revealed that obesity lead to increased expression of genes related to inflammation, decreased glucose transporters, and dysregulation of ovarian function-related genes in the ovaries. Our results suggest maternal obesity led to an up-regulation of inflammatory genes and Egr-1 protien expression in peri-implantation ovarian tissue, and a concurrent down-regulation of glucose transporters mRNA and AKT and PI3K protein levels.
Maternal obesity is associated with ovarian inflammation and upregulation of early growth response factor 1.
Sex, Specimen part
View SamplesMycobacterium abscessus is an emerging pathogen causing pulmonary infections in those with inflammatory lung disorders, such as Cystic Fibrosis (CF), and is associated with the highest fatality rate among rapidly growing mycobacteria (RGM). Phenotypically, MAB manifests as either a Smooth (MAB-S) or a Rough (MAB-R) morphotype, which differ in their levels of cell wall glycopeptidolipids (GPLs) and in their pathogenicity in vivo. As one of the primary immune cells encountered by MAB, we sought to examine the early transcriptional events within macrophages, following infection with both MAB-S or MAB-R. We sampled the small RNA (sRNA) transcriptome of THP-1-derived macrophages infected with both MAB-R and MAB-S at 1, 4 and 24 hours post-infection (hpi) using RNA-seq. MAB-S elicited a more robust transcriptional response at the miRNA level, reflecting higher cytokine levels in culture supernatants. However, and a direct comparison identified no differentially expressed miRNAs between MAB-R- and MAB-S-infected cells. Most of the induced miRNAs have previously been associated with mycobacterial infection and overall miRNA expression patterns were similarly highly correlated between the morphotypes. Overall design: THP-1-derived macrophages were infected in parallel with the MAB-R and MAB-S morphotypes. Poly-A selected RNAs were purified and sequenced at 1, 4 and 24 hours post-infection, and compared with uninfected controls.
High-throughput transcriptomics reveals common and strain-specific responses of human macrophages to infection with Mycobacterium abscessus Smooth and Rough variants.
No sample metadata fields
View SamplesA simultaneous engagement of different pathogen recognition receptors provides a tailor made adaptive immunity for an efficient defence against distinct pathogens. For example, cross talk of TLR and c-type lectin signalling effectively shapes distinct gene expression patterns by integrating the signals at the level of NF-B. Here, we extend this principle to a strong synergism between the Dectin-1 agonist, curdlan, and an inflammatory growth factor, GM-CSF. Both together act in synergy in inducing a strong inflammatory signature which converts immature DCs to potent effector DCs. A variety of cytokines (IL-1, IL-6, TNF-, IL-2 and IL-12p70), costimulatory molecules (CD80, CD86, CD40 and CD70), chemokines (CxCl1, CxCl2, CxCl3, CCl12, CCl17) as well as receptors and molecules involved in fugal recognition and immunity such as Mincle, Dectin-1, Dectin-2 and Pentraxin 3 are strongly up-regulated in DC treated simultaneously with curdlan and GM-CSF. The synergistic effect of both stimuli resulted in strong IKB phosphorylation, in its rapid degradation and in enhanced nuclear translocation of all NF-B subunits. We further identified MAPK ERK, as one possible integration site of both signals, since its phosphorylation was clearly augmented when curdlan was co-applied with GM-CSF. Our data demonstrate that the immunomodulatory activity of curdlan requires an additional signal provided by GM-CSF to successfully initiate a robust -glucan specific cytokine and chemokine response. The integration of both signals clearly prime and tailor a more effective innate and adaptive response against invading microbes and fungi.
Synergism between curdlan and GM-CSF confers a strong inflammatory signature to dendritic cells.
Specimen part
View SamplesTo study how the presence of PUFAs influences central cellular processes, and in order to perform lipidome, transcriptome and molecular studies we decided to use yeast as a model organism. We therefore co-expressed 12-desaturase and 6- desaturase genes from Mucor rouxii in S. cerevisiae with the objective to obtain a yeast strain that contains PUFAs, especially linoleic acid (LA, C18:29,12) and -linolenic acid (GLA, C18:36,9,12), in its membranes.
Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress.
Time
View SamplesCopy number variation (CNV) of DNA segments has recently been identified as a major source of genetic diversity, but a more comprehensive understanding of the extent and phenotypic effect of this type of variation is only beginning to emerge. In this study we generated genome-wide expression data from 6 mouse tissues to investigate how CNVs influence gene expression.
Segmental copy number variation shapes tissue transcriptomes.
No sample metadata fields
View SamplesCharacterization of colon CD11chigh/MHCII+ myeloid cell subsets
Intestinal CD103(+)CD11b(-) dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells.
No sample metadata fields
View Samples