The aim of this study was to quantify the impact of chimeric Foxp3-GFP protein on the Treg cell transcriptional program.
An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes.
Sex, Age, Specimen part
View SamplesThe aim of this study was to investigate if milk fat globule membrane (MFGM) enclosing the dairy fat influence peripheral blood mononuclear cells (PBMC) gene expression. This study was a 8-week single-blind, randomized, controlled isocaloric trial with two parallel groups including overweight (mean BMI: 28) adult women (n=30). All subjects consumed 40 g dairy fat per day either as cream (MFGM diet) or as butter oil (control diet).
Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study.
Age, Specimen part, Time
View SamplesDaily sampling of peripheral blood from human subjects vaccinated for influenza was done immediately before vaccination and for 10 days after vaccination. In B cells, 90% of transcriptomic variation in subjects who received influenza vaccine within the previous three years was explained by a single temporal pattern unique to the individual. A common set of 742 genes was strongly correlated with the migration of differentiating plasma cell subtypes. Overall design: Five subjects, 11 time points per subject (pre-vaccination and daily for 10 days post-vaccination)
High-resolution temporal response patterns to influenza vaccine reveal a distinct human plasma cell gene signature.
Specimen part, Subject, Time
View SamplesDaily sampling of peripheral blood from human subjects vaccinated for influenza was done immediately before vaccination and for 10 days after vaccination. Temporal patterns of gene expression, determined by RNA-seq, in unfractionated PBMC suggested migration of myeloid/dendritic cell lineage cells one day after vaccination. Overall design: Five subjects, 11 time points per subject (pre-vaccination and daily for 10 days post-vaccination)
High-resolution temporal response patterns to influenza vaccine reveal a distinct human plasma cell gene signature.
Specimen part, Subject, Time
View SamplesThe transcription factor Foxp3 is indispensible for the differentiation and function of regulatory T cells (Treg cells). To gain insights into the molecular mechanisms of Foxp3 mediated gene expression we purified Foxp3 complexes and explored their composition. Biochemical and mass-spectrometric analyses revealed that Foxp3 forms multi-protein complexes of 400-800 kDa or larger and identified 361 associated proteins ~30% of which are transcription-related. Foxp3 directly regulates expression of a large proportion of the genes encoding its co-factors. Reciprocally, some transcription factor partners of Foxp3 facilitate its expression. Functional analysis of Foxp3 cooperation with one such partner, Gata3, provided further evidence for a network of transcriptional regulation afforded by Foxp3 and its associates to control distinct aspects of Treg cell biology.
Transcription factor Foxp3 and its protein partners form a complex regulatory network.
Specimen part
View SamplesAcquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. Overall design: mRNA profile of vSMC from the descending aorta of 14.5 embryos Wild type (WT), SMC Jag1-heterozygous (HTZ) and SMC Jag1-null (KO) was generated by deep sequencing, in duplicate.
Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells.
No sample metadata fields
View SamplesAcquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. Overall design: mRNA profile of vascular Smooth Muscle Cells, isolated from the descending aorta of Immorto mouse, treated or not with gamma-secretase inhibitor was generated by deep sequencing, in triplicate.
Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells.
No sample metadata fields
View SamplesThese data, combined with other cohorts (GSE6532, GSE12093, and qRT-PCR based cohorts), was used to construct the EP algorithm, which predicts the likelihood of developing of a distant recurrence of early stage breast cancer under endocrine treatment. In addition, EPclin, a combination of the EP score, the nodal status and the tumor size, was constructed.
A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors.
No sample metadata fields
View SamplesRegulatory T cells (Treg) play a pivotal role in modulating immune responses and were shown to decrease atherosclerosis in murine models. How this effect is brought about remains elusive.
Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis.
Specimen part, Treatment
View SamplesMany cases of acute myeloid leukemia (AML) are associated with mutational activation of RTKs such as FLT3. However, RTK inhibitors have limited clinical efficacy as single agents, indicating that AML is driven by concomitant activation of different signaling molecules. We used a functional genomic approach to identify RET, encoding an RTK not previously implicated in AML, as essential gene in different AML subtypes, and observed that RET-dependent AML cells show activation of RET signaling via ARTN/GFRA3 and NRTN/GFRA2 ligand/co-receptor complexes.
RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia.
Specimen part, Disease
View Samples