Diabetic retinopathy is one of the leading causes of blindness in diabetic patients. Emerging evidence suggests that retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy, but the underlying causes of neuronal loss are unknown.
The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration.
Specimen part
View SamplesAims/hypothesis Due to their ability to regulate various signalling pathways (cytokines, hormones, growth factors), the suppressor of cytokine signalling (SOCS) proteins are thought to be promising therapeutic targets for metabolic and inflammatory disorders. Hence, their role in vivo has to be precisely determined.
Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice.
Specimen part, Subject
View SamplesIGF-I exert multiple effects in different retinal cell populations in both physiological and pathological conditions. Transgenic mice overexpressing IGF-I in the retina showed impaired electroretinographic responses at 6-7 months of age that worsen with age. This retinal neuronal dysfunction was correlated with the loss of rod photoreceptors, bipolar, ganglion and amacrines cells. Neuronal alterations were preceded by the overexpression of retinal stress markers, acute phase proteins and gliosis-related genes. IGF-I overexpression leads to chronic gliosis and microgliosis in TgIGF-I retinas, with mild oxidative stress, impaired recycling of glutamate and defective potassium buffering. These impaired supportive functions can contribute to neurodegeneration in TgIGF-I retinas, together with the increased production of pro-inflammatory cytokines, potential mediators of neuronal death.
Insulin-like Growth Factor 2 Overexpression Induces β-Cell Dysfunction and Increases Beta-cell Susceptibility to Damage.
Sex, Specimen part
View SamplesPrimary Myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hyperplastic megakaryopoiesis and myelofibrosis. Through a gene expression profile (GEP) study we recently highlighted the upregulationof miR-34a-5p in PMF versus healthy donor (HD) CD34+ hematopoietic progenitor cells (HPCs). To shed some light into the role of miR-34a-5p in PMF pathogenesis, here we unravelled the effects of the overexpression of miR-34a-5p in HPCs forcing its expression in HPCs.
Role of miR-34a-5p in Hematopoietic Progenitor Cells Proliferation and Fate Decision: Novel Insights into the Pathogenesis of Primary Myelofibrosis.
Specimen part, Treatment, Subject
View SamplesAs recently reported by our group, we performed miRNA and gene expression profiling of CD34+ hematopoietic stem/progenitor cells (HSPCs) isolated from 42 PMF patient samples compared with 31 healthy controls. Integrative analysis of these profiles by means of Ingenuity Pathway Analysis (IPA) allowed the identification of several aberrantly regulated miRNA-mRNA target pairs organized in interaction networks. In particular, our results highlighted the up-regulation of miR-494-3p in CD34+ cells from PMF patients (Norfo R et al, Blood, 2014). Interestingly, among the most upregulated miRNAs, miR-494-3p emerges as being associated to the highest number of downregulated target mRNAs. In order to understand the biological role of miR-494-3p during the hematopoietic commitment and differentiation, we overexpressed this miRNA in cord blood (CB) derived-CD34+ cells. Cells were electroporated with either miR-494-3p miRNA mimic (mimic miR-494) or a negative control mimic (mimic Neg CTR). qRT-PCR confirmed miR-494-3p overexpression 24h and 4 days after transfection (RQ SEM, 512.60 137.37, p<.01, and 20.63 3.03, p<.01, respectively).
miR-494-3p overexpression promotes megakaryocytopoiesis in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6.
Specimen part, Treatment
View SamplesWe generated whole genome expression profiles from a homogeneous population of purified pacemaker neurons (ventral Lateral Neurons, LNvs) from wild type and clock mutant Drosophila. The study identifes a group of genes whose expression is highly enriched in LNvs compared to other neurons; and a second group of genes rhythmically expressed in LNvs in a clock-dependent manner.
A mechanism for circadian control of pacemaker neuron excitability.
Specimen part
View SamplesSeveral transcription factors are known to be expressed in discrete regions of the otic vesicle and Dlx5 is one of those that is expressed highly in the presumptive dorsal vestibular region. Mice lacking Dlx5 have vestibular defects. Specifically, they fail to form the endolymphatic duct (a defect visible as early as E10) as well as the anterior and posterior semi-circular canals. The lateral canal does form but is smaller, whereas the saccule, the utricle and the cochlea appear relatively normal. The goal of this study was to use microarrays to identify differentially expressed genes between wild-type and Dlx5-null otic vesicles microdissected from E10 and 10.5 and identify downstream targets of Dlx5 by searching the immediate 3kb promoter regions of the differentially expressed genes for homeodomain binding sites followed by chromatin immunoprecipitation in an otic vesicle-derived cell line over-expressing Dlx5.
Identification of direct downstream targets of Dlx5 during early inner ear development.
Age, Specimen part
View SamplesDeprivation of peripheral nerve input by cochlear removal in young mice results in dramatic neuron death in the cochlear nucleus (CN). The same manipulation in older mice does not result in significant loss. The molecular basis of this critical period of vulnerability remains largely unknown. Here we identified genes regulated at early time points after cochlear removal at ages when neurons are vulnerable (postnatal day (P)7) or invulnerable (P21) to this challenge. Afferent deprivation regulated very different sets of genes at P7 and P21. These genes showed a variety of functions at both ages, but surprisingly there was no net increase in pro-apoptotic genes at P7. A large set of upregulated immune-related genes was identified at P21.
Afferent deprivation elicits a transcriptional response associated with neuronal survival after a critical period in the mouse cochlear nucleus.
No sample metadata fields
View SamplesThe Dlx homeobox genes have central roles in controlling patterning and differentiation of the brain and craniofacial primordia. In the brain, loss of Dlx function results in defects in the production, migration and differentiation of GABAergic neurons, that can lead to epilepsy. In the branchial arches, loss of Dlx function leads to craniofacial malformations that include trigeminal axon pathfinding defects. To determine how these genes function, we wish to identify the transcriptional circuitry that lies downstream of these transcription factors by comparing gene expression in wild type with Dlx mutant CNS and craniofacial tissues.
Dlx genes pattern mammalian jaw primordium by regulating both lower jaw-specific and upper jaw-specific genetic programs.
No sample metadata fields
View SamplesWe analyzed whether cochlear removal-induced transcriptional changes in the cochlear nucleus (CN) were due to loss of electrical activity in the 8th nerve. Pharmacological activity blockade of the auditory nerve for 24 h resulted in similar expression changes for only a subset of genes. Thus, an additional factor not dependent on action potential-mediated signaling must also regulate transcriptional responses to deafferentation in the CN.
Afferent deprivation elicits a transcriptional response associated with neuronal survival after a critical period in the mouse cochlear nucleus.
No sample metadata fields
View Samples