HIV-1 and HIV-2 can both infect humans, but HIV-2 causes a slow progressing disease and is well controlled by the immune system for prolonged period of times.
HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs.
Treatment, Subject, Time
View SamplesLangerhans cells (LC) represent one of the first lines of contact between the immune system and sexually transmitted pathogens, and in the human epidermis LCs have been thought to represent the only mononuclear phagocyte (MNP) population. Here we show an additional epidermal MNP subset that can be distinguished from LCs phenotypically as CD11chi, CD1c+ MR+ (epidermal CD11c+ DCs). These cells are transcriptionally similar to dermal cDC2 but express higher levels of costimulatory markers and are more efficient at T cell stimulation. Importantly, compared to LC, epidermal CD11c+ DCs are i) enriched in the epithelium of anogenital tissues where they preferentially interact with HIV, ii) express the higher levels of the HIV entry receptor CCR5, iii) support the higher levels of HIV uptake and replication and iv) are more efficient at transferring virus to CD4 T cells. Importantly these findings were observed using both a lab-adapted and transmitted/founder strain of HIV. We also describe a cell population that can be discerned from LCs by their lower surface expression of CD45, HLA-DR and CD33 (epidermal CD33low cells). These are transcriptionally similar to LCs but do not appear to function as APCs as do not secrete cytokines, express negligible amounts of costimulatory molecules and are very weak inducers of T cell proliferation. They also do not act as HIV target cells. Our findings reveal a new subset of epidermal DCs in skin and anogenital tissues with a potential key role in sexual transmission of HIV. Overall design: Sorted cell populations from four donors were captured directly into lysis buffer and polyA RNA transcripts were reverse transcribed, amplified and sequenced using the Smart-seq 2 protocol described by Picelli et al (Nature Methods. 2013;10(11):1096-8). Each sample was sequenced across 4 HiSeq lanes and the data for each lane is represented as an independent sample (GSM).
Identification of HIV transmitting CD11c<sup>+</sup> human epidermal dendritic cells.
No sample metadata fields
View SamplesIn several developmental lineages, an increase in expression of the MYC proto-oncogene drives the transition from quiescent stem cells to transit amplifying cells. The mechanism by which MYC restricts self-renewal of adult stem cells is unknown. Here, we show that MYC activates a stereotypic transcriptional program of genes involved in protein translation and mitochondrial biogenesis in mammary epithelial cells and indirectly inhibits the YAP/TAZ co-activators that are essential for mammary stem cell self-renewal. We identify a phospholipase of the mitochondrial outer membrane, PLD6, as the mediator of MYC activity. PLD6 mediates a change in the mitochondrial fusion/fission balance that promotes nuclear export of YAP/TAZ in a LATS- and RHO-independent manner. Mouse models and human pathological data confirm that MYC suppresses YAP/TAZ activity in mammary tumors. PLD6 is also required for glutaminolysis, arguing that MYC-dependent changes in mitochondrial dynamics balance cellular energy metabolism with the self-renewal potential of adult stem cells. Overall design: RNA-Seq Experiments in 2 different primary breast epithelial cell lines (HMLE, which were sorted according to CD44/CD24 surface markers & unsorted IMEC). Both cell lines expressed a doxycycline-inducible version of MYC. For the HMLE cell line DGE analysis was performed for the uninduced (EtOH) situation, comparing CD44high vs CD44 low and for the induced situation Dox vs. EtOH for the CD44high population. For the IMEC cell line DGE was performed by comparing Dox-treated populations expressing either Dox-inducible MYC or a vector control which allows to filter out potential effects due to doxycycline treatment.
A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer.
No sample metadata fields
View SamplesThe microbial population that live within the gut of animals influences their physiology. We used axenic and recolonized flies to identify genes whose expression is modulated by the presence of a bacterial flora in the gut.
Drosophila microbiota modulates host metabolic gene expression via IMD/NF-κB signaling.
Specimen part, Treatment
View SamplesDentatorubral-pallidoluysian Atrophy (DRPLA) is a human polyQ disease caused by the expansion of a CAG strech in the atrophin-1 (at-1) gene. In all vertebrates, a second atrophin gene (at-2) is present and it encodes a related protein void of polyQ tracks. In D.melanogaster there is one conserved Atrophin (Atro) gene, ubiquitously expressed, which contains all functional domains of vertebrate Atrophins, including two polyQ stretches. To understand to what extent transcriptional alterations cause neurodegeneration and are linked to the normal functions of Atrophin, we performed a genome wide transcriptional profiling in our Drosophila models, focusing on primary events that precede neurodegeneration.
Polyglutamine Atrophin provokes neurodegeneration in Drosophila by repressing fat.
No sample metadata fields
View SamplesInvasion of lymphatic vessels is a key step in the metastasis of primary tumour cells to draining lymph nodes. Recent evidence indicates that such metastasis can be facilitated by tumour lymphangiogenesis, although it remains unclear whether this is a consequence of increased lymphatic vessel numbers or alteration in the properties of the vessels themselves. Here we have addressed this important question by comparing the RNA profile of normal dermal lymphatic endothelial cells (LEC) with those isolated from tumours of murine T-241/VEGF-C metastatic fibrosarcoma. Our findings reveal significant changes in the expression of some 792 genes in tumour lymphatics ( 2 fold up/downregulation, p 0.05), involving particularly transcripts associated with junctional adhesion, immunomodulation, extracellular matrix and vessel growth/patterning, several of which we have confirmed by RT-PCR and/or immunohistochemistry. Interestingly, this altered phenotype could not be attributed solely to VEGF-C induced lymphoproliferation, as no similar change in gene expression was reported when human LEC were cultured with VEGF-C in vitro. Moreover, we show that a key protein upregulated in the mouse model, namely the tight junction protein Endothelial Cell Specific Adhesion Molecule (ESAM), is similarly upregulated in tumour lymphatic vessels from 2/2 patients with head and neck squamous cell carcinoma and 4/4 patients with aggressive bladder carcinoma. These findings demonstrate a previously unrecognized influence of tumour environment on lymphatic gene expression and identify candidate tumour specific vessel markers that may prove valuable for either prognosis or therapy.
A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis.
No sample metadata fields
View SamplesIdentification of genes and pathways relevant to Cervical cancer pathogenesis. The study also aimed at identifying probable mechanistic differences in the low and high HOTAIR expressing cervical cancers patients .
Bridging Links between Long Noncoding RNA HOTAIR and HPV Oncoprotein E7 in Cervical Cancer Pathogenesis.
Age, Specimen part
View SamplesThe nuclear receptor PPARalpha is recognized as the primary target of the fibrate class of hypolipidemic drugs and mediates lipid lowering in part by activating a transcriptional cascade that induces genes involved in the catabolism of lipids. We report here the characterization of three novel PPARalpha agonists with therapeutic potential for treating dyslipidemia. These structurally related compounds display potent and selective binding to human PPARalpha and support robust recruitment of coactivator peptides in vitro. These compounds markedly potentiate chimeric transcription systems in cell-based assays and strikingly lower serum triglycerides in vivo. The transcription networks induced by these selective PPARalpha agonists were assessed by transcriptional profiling of mouse liver after acute and chronic treatment. The induction of several known PPARalpha target genes involved with fatty acid metabolism were observed, reflecting the expected pharmacology associated with PPARalpha activation. We also noted the downregulation of a number of genes related to immune cell function, the acute phase response, and glucose metabolism; suggesting that these compounds may have anti-inflammatory action in the mammalian liver. Taken together, these studies articulate the therapeutic promise of a selective PPARalpha agonist.
Molecular characterization of novel and selective peroxisome proliferator-activated receptor alpha agonists with robust hypolipidemic activity in vivo.
No sample metadata fields
View SamplesThe nuclear exosome performs critical functions in non-coding RNA processing, and in diverse surveillance functions including the quality control of mRNP formation, and in the removal of pervasive transcripts. Most non-coding RNAs and pervasive nascent transcripts are targeted by the Nrd1p-Nab3p-Sen1p (NNS) complex to terminate Pol II transcription coupled to nuclear exosome degradation or 3´-end trimming. Prior to nuclear exosome activity, the Trf4p-Air2p-Mtr4p polyadenylation complex adds an oligo-A tail to exosome substrates. Inactivating exosome activity stabilizes and lengthens these A-tails. We utilized high-throughput 3´-end poly(A)+ sequencing to identify at nucleotide resolution the 3´ ends targeted by the nuclear exosome, and determine the sites of NNS-dependent termination genome-wide. Overall design: 3´-end mapping of wild-type and various nuclear exosome mutant strains, either using gene knockouts or the anchor away system to conditionally deplete FRB-tagged proteins from the nucleus
Common genomic elements promote transcriptional and DNA replication roadblocks.
Subject
View SamplesHlxb9 is a differentiation factor important for neuronal, and pancreatic beta cell differentiation. It is a transcription factor that represses transcription. It's target genes are unknown. The mouse pancreatic beta cell line MIN6 was used to assess the expression of genes de-repressed upon Hlxb9 knockdown.
The embryonic transcription factor Hlxb9 is a menin interacting partner that controls pancreatic β-cell proliferation and the expression of insulin regulators.
Disease, Cell line
View Samples