Microarray analysis was performed at the UHN Microarray Centre (UHNMAC, Ontario, Canada) using Illumina HumanHT-12 v4 BeadChip with 500 ng of total RNA prepared by RNeasy mini kit (QIAGEN, Cat. No. 74104). Samples from HCC1954 cells with 3-day treatment of TBK1-II at 4 uM were used to compare with vehicle-treated controls. Microarray data was processed and normalized by lumi package from BioConductor in R with Quantile Method. Difference between the samples were calculated by Bayesian statistic using limma package from BioConductor in R to obtain Moderated T value for subsequent Pathway analysis.
shRNA kinome screen identifies TBK1 as a therapeutic target for HER2+ breast cancer.
Cell line
View SamplesHuman mononuclear cells were cultured in 2 phases. In the 1st phase the culture medium contained cyclosporine A the 2nd phase contained SCF and erythropoietin. Cells were collected at 3 stages of differentiation; on day 6, 10, 12 and represented early erythroblasts, medium stage and normoblasts.
Identification of gene networks associated with erythroid differentiation.
No sample metadata fields
View SamplesWe show that mesenchymal CSC-like cells express an embryonic stem cell signature that is mutant p53 dependent Overall design: Examination of three p53 mutant mesenchymal stem cells and ten derived CSC-like cell lines and 2 derived p53 mutant KO clones compared to control clones
A Mutant p53-Dependent Embryonic Stem Cell Gene Signature Is Associated with Augmented Tumorigenesis of Stem Cells.
Specimen part, Cell line, Subject
View SamplesIn order to obtain a global picture regarding regulation of p53 in liver cells we used HepG2 hepatoma cells.We created two isogenic sub-cultures of HepG2 cells with altered expression of p53.
Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53.
Specimen part, Cell line
View SamplesMonocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity. Overall design: Human monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) were isolated from 12 healthy volunteers based on MACS technology. Total RNA from monocyte subsets was isolated and same aliquots from each donor and monocyte subset were matched for SuperSAGE. Three SuperSAGE libraries (CD14++CD16-, CD14++CD16+ and CD14+CD16++) were generated.
SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset.
No sample metadata fields
View SamplesStaphylococcus aureus is a highly adaptable human pathogen; therefore a constant search for new effective antibiotic compounds is being preformed. Gene expression profiling can be used to determine potential targets and mechanisms of action (MOA) of known or potential drugs. The goal of our study was a development of a focused transcriptome platform to be used for confirming the MOA of new chemical entities which are designed as inhibitors of Mur ligases. A model transcriptional profile was set up for well described inhibitor of MurA ligase, fosfomycin. Moreover, we wanted to identify the pathways and processes primarily affected by this compound. S. aureus ATCC 29213 cells were treated with low concentrations of fosfomycin (1 and 4 g/ml, respectively) and harvested at 10, 20 and 40 minutes after treatment, respectively. RNA was isolated, transcribed, labeled and hybridized to S. aureus GeneChips, representing approximately 3000 S. aureus genes.
Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation.
No sample metadata fields
View SamplesThe tumor suppressor p53 is a transcription factor that controls the response to stress. Here, we dissected the transcriptional programs triggered upon restoration of p53 in Myc-driven lymphomas, based on the integrated analysis of p53 genomic occupancy and gene regulation. p53 binding sites were identified at promoters and enhancers, both characterized by the pre-existence of active chromatin marks. p53 recruitment at these sites was mainly mediated through protein-protein or protein-chromatin interactions and, only for a small fraction, through recognition of the 20 base-pair p53 consensus motif. At promoters, p53 binding to the consensus motif was associated with gene induction, but not repression, indicating that the latter was most likely indirect. p53 also targeted unmarked distal sites devoid of activation marks, at which binding was prevalently driven by recognition of the consensus motif. At all sites, our data highlighted a functional role for the canonical, unsplit consensus element, but did not provide evidence for p53 recruitment by split motifs. Altogether, our data highlight key features of genome recognition by p53 and provide unprecedented insight into the pathways associated with p53 re-activation and tumor regression. Overall design: Total RNA profiling of gene expression in Eµ-myc lymphomas following p53 restoration by Illumina sequencing
Genome-wide analysis of p53-regulated transcription in Myc-driven lymphomas.
Specimen part, Cell line, Subject
View SamplesE47 represses Foxp3 transcription, albeit indirectly through the activation of unknown negative regulatory of Foxp3 transcription.
Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.
Age, Specimen part
View SamplesDuplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a key causal role in tumorigenesis. According to an alternative view, chromosomal instabilities are mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that deregulation of some key pathways, such as MAPK, p53, cell cycle regulation and Polycomb group factors, in addition to activation of several genes like Myc, AML, B-Catenin and the ETS family transcription factors, are key steps in cancer development driven by 20q amplification. Finally we identified 13 cancer initiating genes, located on 20q13, which were significantly overexpressed in many tumors, with expression levels correlated with tumor grade and outcome; these probably play key roles in inducing malignancy via20q amplification.
Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer.
Specimen part
View SamplesGlucocorticoids are used for the treatment of inflammatory conditions but they also cause many side-effects.
Glucocorticoids induce gastroparesis in mice through depletion of l-arginine.
Treatment, Time
View Samples