Constitutive activation of EGFR- and NF-kB-dependent pathways is a hallmark of cancer, yet signaling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as a BCL-3- and p65-dependent gene in transformed keratinocytes. KIAA1199 expression is enhanced upon human papillomavirus (HPV) infection and is aberrantly expressed in clinical cases of cervical (pre)neoplastic lesions. Mechanistically, KIAA1199 binds Plexin A2 and protects from Semaphorin 3A-mediated cell death by promoting EGFR stability and signaling. Moreover, KIAA1199 is an EGFR-binding protein and KIAA1199 deficiency impairs EGF-dependent Src, MEK1 and ERK1/2 phosphorylations. Therefore, EGFR stability and signaling to downstream kinases requires KIAA1199. As such, KIAA1199 promotes EGF-mediated epithelial-mesenchymal transition (EMT). Taken together, our data define KIAA1199 as an oncogenic protein induced by HPV infection and constitutive NF-kB activity that transmits pro-survival and invasive signals through EGFR signaling.
NF-κB-induced KIAA1199 promotes survival through EGFR signalling.
Specimen part, Cell line, Treatment
View SamplesRecent studies of cortical pathology in secondary progressive multiple sclerosis have shown that a more severe clinical course and the presence of extended subpial grey matter lesions with significant neuronal/glial loss and microglial activation are associated with meningeal inflammation, including the presence of lymphoid-like structures in the subarachnoid space in a proportion of cases. To investigate the molecular consequences of pro-inflammatory and cytotoxic molecules diffusing from the meninges into the underlying grey matter, we carried out gene expression profiling analysis of the motor cortex from 20 post-mortem multiple sclerosis brains with and without substantial meningeal inflammation and 10 non-neurological controls. Gene expression profiling of grey matter lesions and normal appearing grey matter not only confirmed the substantial pathological cell changes, which were greatest in multiple sclerosis cases with increased meningeal inflammation, but also demonstrated the upregulation of multiple genes/pathways associated with the inflammatory response. In particular, genes involved in tumour necrosis factor (TNF) signalling were significantly deregulated in MS cases compared to controls.
Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis.
Specimen part, Disease, Disease stage
View SamplesGenetic and epigenetic processes result in gene expression changes through alteration of the chromatin structure. The relative position of genes on chromosomes has therefore important functional implications and can be exploited to model microarray datasets. Gliomas are the most frequent primary brain tumours in adults and their prognosis is related to histology and grade. In oligodendrogliomas, allelic loss of 1p/19q and hypermethylation of MGMT promoter is associated with longer survival and chemosensitivity. In this work we used oligonucleotide microarray to study a group of 30 gliomas with various oligodendroglial and astrocytic components. We used an original approach combining a wavelet model of inter-probe genomic distance (CHROMOWAVE) and unsupervised method of analysis (Singular Value Decomposition) in order to discover new prognostic chromosomal patterns of gene expression. We identified a major pattern of variation that strongly correlated with survival (p= 0.007) and could be visualized as a genome-wide chromosomal pattern including widespread gene expression changes on 1p, 19q, 4, 18, 13 and 9q and multiple smaller clusters scattered along chromosomes. Gene expression changes on chromosomes 1p, 19q and 9q were significantly correlated with the allelic loss of these regions as measured by FISH. Differential expression of genes implicated in drug resistance was also a feature of this chromosomal pattern and in particular low expression of MGMT was correlated with favourable prognosis (p<0.0001). Remarkably, unsupervised analysis of the expression of individual genes and not of their chromosomal ensemble produced a pattern that could not be associated with prognosis, emphasizing the determinant role of the wavelet mathematical modelling.
Chromosomal patterns of gene expression from microarray data: methodology, validation and clinical relevance in gliomas.
No sample metadata fields
View SamplesCDKN1B (p27) was formally established as a tumor suppressor gene (tsg) following the identification of inactivating germline mutations in rats (MENX syndrome) and patients (MEN4 syndrome) developing multiple neuroendocrine tumors (NETs). MENX-affected rats are homozygous for the predisposing p27 mutation, suggesting a canonical tsg function. In contrast, mice heterozygous for a defective Cdkn1b allele are already predisposed to tumor formation (haploinsufficiency). We here report that heterozygous mutant rats (p27+/mut) develop the same NETs seen in the homozygous (p27mut/mut) animals but with slower progression. In the tumors of p27+/mut rats, the wild-type allele is neither lost nor silenced, implying that p27 is haploinsufficient for tumor suppression also in this model.
Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma.
Age
View SamplesAs overwhelming evidence coming from transgenic mouse models but also from MEN4 patients seem to suggest that loss or inactivation of a single p27 allele plays an important role in neuroendocrine tumorigenesis, we decided to perform a detailed analysis of the phenotype of rats heterozygous for the MENX-associated germline Cdkn1b mutation. We here show that the reduction to a single functional p27 allele predisposes MENX heterozygous rats to the development of neuroendocrine malignancies.
Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma.
Sex, Age, Specimen part
View SamplesAs overwhelming evidence coming from transgenic mouse models but also from MEN4 patients seem to suggest that loss or inactivation of a single p27 allele plays an important role in neuroendocrine tumorigenesis, we decided to perform a detailed analysis of the phenotype of rats heterozygous for the MENX-associated germline Cdkn1b mutation.
Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma.
Sex, Age, Specimen part
View SamplesGonadotroph adenomas comprise 1540 % of all pituitary tumors, are usually non-functioning and are often large and invasive at presentation. Surgery is the first-choice treatment, but complete resection is not always achieved, leading to high recurrence rates. As gonadotroph adenomas poorly respond to conventional pharmacological therapies, novel treatment strategies are needed. Their identification has been hampered by our incomplete understanding of the molecular pathogenesis of these tumors. Recently, we demonstrated that MENX-affected rats develop gonadotroph adenomas closely resembling their human counterparts. To discover new genes/pathways involved in gonadotroph cells tumorigenesis, we performed transcriptome profiling of rat tumors versus normal pituitary. Adenomas showed overrepresentation of genes involved in cell cycle, development, cell differentiation/proliferation, and lipid metabolism. Bioinformatic analysis identified downstream targets of the transcription factor SF-1 as being up-regulated in rat (and human) adenomas. Meta-analyses demonstrated remarkable similarities between gonadotroph adenomas in rats and humans, and highlighted common dysregulated genes, several of which were not previously implicated in pituitary tumorigenesis. Two such genes, CYP11A1 and NUSAP1, were analyzed in 39 human gonadotroph adenomas by qRT-PCR and found to be up-regulated in 77 and 95 % of cases, respectively. Immunohistochemistry detected high P450scc (encoded by CYP11A1) and NuSAP expression in 18 human gonadotroph tumors. In vitro studies demonstrated for the first time that Cyp11a1 is a target of SF-1 in gonadotroph cells and promotes proliferation/survival of rat pituitary adenoma primary cells and cell lines. Our studies reveal clues about the molecular mechanisms driving rat and human gonadotroph adenomas development, and may help identify previously unexplored biomarkers for clinical use.
Transcriptome analysis of MENX-associated rat pituitary adenomas identifies novel molecular mechanisms involved in the pathogenesis of human pituitary gonadotroph adenomas.
Sex, Age, Specimen part
View SamplesGene transfer into HSCs by gammaretroviral vectors (RV) is an effective treatment for inherited blood disorders, although potentially limited by the risk of insertional mutagenesis. We evaluated the genomic impact of RV integration in T-lymphocytes from adenosine deaminase (ADA)-Severe combined immunodeficiency (SCID) patients 10 to 30 months after infusion of autologous, genetically-corrected CD34+ cells. Expression profiling on ex vivo T-cell bulk population revealed no difference with respect to healthy controls. To assess the effect of vector integration on gene expression at the single cell level, primary T-cell clones were isolated from two patients. T-cell clones harboured either one or two vector copies per cell and displayed partial to full correction of ADA expression, purine metabolism and TCR-driven functions. Analysis of retroviral integration sites (RIS) indicated a high diversity in T-cell origin, consistent with the polyclonal TCR-Vbeta repertoire. Quantitative transcript analysis of 120 genes within a 200kb-window around RIS showed modest (2.8- to 5.2-fold) disregulation of 5.8% genes in 18.6% of the T-cell clones compared to controls. Nonetheless, affected clones maintained a stable phenotype and normal functions in vitro. These results confirm that RV-mediated gene transfer for ADA-SCID is safe, and provide crucial information for the development of future gene therapy protocols.
Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy.
Specimen part
View SamplesA key event in the pathogenic process of prion diseases is the conversion of the cellular prion protein (PrPC) to an abnormal and protease-resistant isoform (PrPSc). Mice lacking PrP are resistant to prion infection, and down-regulation of PrPC during prion infection prevents neuronal loss and the progression to clinical disease. These results are suggestive of the potential beneficial effect of silencing PrPC during prion diseases. However, the silencing of a protein that is widely expressed throughout the CNS could be detrimental to brain homeostasis. The physiological role of PrPC remains still unclear, but several putative functions have been proposed. Among these, several lines of evidence support PrPC function in neuronal development and maintenance.
Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus.
Specimen part
View SamplesDownregulation of expression and activity levels of the astroglial glutamate transporter EAAT2 is thought to be implicated in motor neuron excitotoxicity in amyotrophic lateral sclerosis (ALS). We previously reported that EAAT2 is cleaved by caspase-3 at the cytosolic C-terminus domain, impairing the transport activity and generating a proteolytic fragment found to be SUMO1 conjugated (CTE-SUMO1). We show here that this fragment accumulates in the nucleus of spinal cord astrocytes in vivo throughout the disease stages of the SOD1-G93A mouse model of ALS. In vitro expression in spinal cord astrocytes of the C-terminus peptide of EAAT2 (CTE), which was artificially fused to SUMO1 (CTE-SUMO1fus) to mimic the endogenous SUMOylation reaction, recapitulates the nuclear accumulation of the fragment seen in vivo and causes caspase-3 activation and axonal growth impairment in motor neuron-derived NSC-34 cells and primary motor neurons co-cultured with CTE-SUMO1fus-expressing spinal cord astrocytes. This indicates that CTE-SUMO1fus could trigger non-cell autonomous mechanisms of neurodegeneration. Prolonged nuclear accumulation of CTE-SUMO1fus in astrocytes leads to their degeneration, although the time frame of the cell-autonomous toxicity is longer than the one for the indirect toxic effect on motor neurons. As more evidence on the implication of SUMO substrates in neurodegenerative diseases emerges, our observations strongly suggest that the nuclear accumulation in spinal cord astrocytes of a SUMOylated proteolytic fragment of the astroglial glutamate transporter EAAT2 could take part to the pathogenesis of ALS and suggest a novel, unconventional role for EAAT2 in motor neuron degeneration in ALS.
Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2.
Specimen part
View Samples