This SuperSeries is composed of the SubSeries listed below.
ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup.
Specimen part
View SamplesGene expression profiling of PanNETs patients samples were performed to understand genotype to phenotype correlations, novel molecular subtypes and cell of origin
ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup.
Specimen part
View SamplesThe most commonly mutated genes in pancreatic neuroendocrine tumors (PanNETs) are ATRX, DAXX, and MEN1. Little is known about the cells-of-origin for non-functional neuroendocrine tumors. Here, we genotyped 64 PanNETs for mutations in ATRX, DAXX, and MEN1 and found 37 tumors (58%) carry mutations in these three genes (A-D-M mutant PanNETs) and this correlates with a worse clinical outcome than tumors carrying the wild-type alleles of all three genes (A-D-M WT PanNETs). We performed RNA sequencing and DNA-methylation analysis on 33 randomly selected cases to reveal two distinct subgroups with one group consisting entirely of A-D-M mutant PanNETs. Two biomarkers differentiating A-D-M mutant from A-D-M WT PanNETs were high ARX gene expression and low PDX1 gene expression with PDX1 promoter hyper-methylation in the A-D-M mutant PanNETs. Moreover, A-D-M mutant PanNETs had a gene expression signature related to that of alpha cells (pval < 0.009) of pancreatic islets including increased expression of HNF1A and its transcriptional target genes. This gene expression profile suggests that A-D-M mutant PanNETs originate from or transdifferentiate into a distinct cell type similar to alpha cells. Overall design: Evaluation of Cell of origins for non-functional PanNETs and genotype to phenotype correlations in PanNETs
ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup.
Specimen part, Subject
View SamplesErythropoiesis in mammals replenishes the circulating red blood cell (RBC) pool from hematopoietic stem/progenitor cells (HSPCs). Two distinct erythropoietic programs have been described. In the first trimester, hematopoietic precursors in the fetal yolk sac follow a primitive pattern of erythropoiesis. However, in the second trimester, hematopoietic stem cells (HSCs) from the fetal liver and later from the bone marrow differentiate by a definitive program of erythropoiesis to yield enucleated erythrocytes. RBCs can also be derived from human induced pluripotent stem cells (hiPSCs) and can express many of the red cell proteins required for normal erythrocyte function, presaging in vitro RBC production for clinical use. However, expansion and enucleation from hiPSCs is less efficient than with erythroblasts (EBs) derived from adult or cord blood progenitors. We hypothesized that substantial differential gene expression during erythroid development from hiPSCs compared to that from adult blood or cord blood precursors could account for these hitherto unexplained differences in proliferation and enucleation. We have therefore grown EBs from human adult and cord blood progenitors and from hiPSCs. Gene expression during erythroid culture from each erythroblast source was analyzed using algorithms designed to cluster co-expressed genes in an unsupervised manner and the function of differentially expressed genes explored by gene ontology. Using these methods we identify specific patterns of gene regulation for adult- and cord- derived EBs, regardless of the medium used, that are substantially distinct from those observed during the differentiation of EBs from hiPSC progenitors which largely follows a pattern of primitive erythropoiesis.
Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors.
Specimen part
View SamplesUnderstanding the pattern of gene expression and identifying the specific genes expressed during erythropoiesis is crucial for a synthesis of erythroid developmental biology. Here we have isolated four distinct populations of erythroblasts at successive erythropoietin-dependent stages of erythropoiesis including the terminal, pyknotic stage. The transcriptome has been determined using Affymetrix arrays. First, we show that cells sorted by surface expression profile express not only significantly fewer genes than unsorted cells, but also significantly more differences in the expression levels of particular genes between stages than unsorted cells, demonstrating the importance of working with defined cell populations to identify lineage and temporally-specific patterns of gene expression. Second, using standard software and matched filtering we identify eleven differentially regulated genes and one continuously expressed gene previously undetected in erythroid expression studies with unknown roles in erythropoiesis (CA3, CALB1, CTSL2, FKBP1B, GSDMB, ITLN1, LIN7B, RRAD, RUNDC3A, UNQ1887, ZNF805, MYL12B). Finally, using transcription factor binding site analysis we identify potential transcription factors that may regulate gene expression during terminal erythropoiesis. Our stringent lists of differentially regulated and continuously expressed transcripts are a resource for functional studies of erythropoietic protein function and gene regulation.
Global gene expression analysis of human erythroid progenitors.
Specimen part
View SamplesThe undifferentiated state of pluripotent stem cells depends heavily on the culture conditions. We show that a unique combination of small molecules, SMC4, added to culture conditions converts primed pluripotent stem cells to a more nave state. By conducting Affymetix analysis we show of majority of lineage markers are repressed in SMC4 culture.
A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs.
Specimen part, Cell line
View SamplesThis study identifies a transciptomic myometrial profile associated with dystocia in spontanous nulliparous term labour
Identification of a myometrial molecular profile for dystocic labor.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesOvulation requires sequential molecular events and structural remodeling in the ovarian follicle for the successful release of a mature oocyte capable of being fertilised. Critical to this process is progesterone receptor (PGR), a transcription factor highly yet transiently expressed in granulosa cells of preovulatory follicles. Progesterone receptor knockout (PRKO) mice are anovulatory, with a specific and complete defect in follicle rupture. Therefore, this model was used to examine the critical molecular and biochemical mechanisms necessary for successful ovulation.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesOvulation requires sequential molecular events and structural remodeling in the ovarian follicle for the successful release of a mature oocyte capable of being fertilised. Critical to this process is progesterone receptor (PGR), a transcription factor highly yet transiently expressed in granulosa cells of preovulatory follicles. Progesterone receptor knockout (PRKO) mice are anovulatory, with a specific and complete defect in follicle rupture. Therefore, this model was used to examine the critical molecular and biochemical mechanisms necessary for successful ovulation.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View Samples