Zinc is an essential micronutrient in pregnancy and zinc deficiency impairs fetal growth. We used a mouse model of moderate zinc deficiency to determine how zinc is important to placental morphogenesis.
Zinc is a critical regulator of placental morphogenesis and maternal hemodynamics during pregnancy in mice.
Specimen part
View SamplesImmune system homeostasis depends on signals that drive effector (like secretion of pro-inflammatory cytokines like IFNg) and regulatory (like secretion of the anti-inflammatory cytokine IL-10) functions.
The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part
View SamplesOur goal was to transcriptionally profile Prdm1+ cell lineages of maternal and embryonic origin in mid-gestation mouse placenta in order to study vascular mimicry and additional processes in the placenta. Overall design: Profiling of 61 single cells and 17 clusters of 2 or 3 cells chosen based on expression of Prdm1, a paternally inherited Prdm1-Venus fluorescent reporter, progenitor trophoblast marker Gjb3 and spiral artery trophoblast giant cell marker Prl7b1.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part, Cell line, Subject
View SamplesExpression profiling of wild-type and Prdm1 null mouse trophoblast giant cell cultures using Illumina whole genome mouse V2 arrays.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part
View SamplesTo examine the effect of seminal fluid on the whole genome expression profile of endometrial tissue following mating, RNA was extracted from endometrial tissue collected 8 h after CBAF1 females were mated with intact Balb/c males and compared to RNA from endometrial tissue of females mated with seminal fluid deficient SVX/VAS Balb/c males. This comparison controlled for ovarian hormone status, exposure to the male and mating activity, and the neuroendocrine response to cervical and vaginal stimulus at mating, so that changes in endometrial gene expression could be attributed specifically to contact with seminal fluid. The endometrial RNA from n=16 individual females was pooled into four independent biological replicates per treatment group (n=4 endometrial samples per replicate) and expression profiles were analyzed by Affymetrix microarray. Seminal fluid exposure induced a clear difference in the profile of genes expressed in the endometrium with a total of 335 genes were differentially regulated with a fold-change greater than 1.5 and p<0.05. Of these, 190 genes were upregulated and 145 genes were downregulated following contact with seminal fluid. Bioinformatics analysis revealed TLR4 signaling as a strongly predicted upstream regulator activated by the differentially expressed genes.Additional experiments confirmed the role of TLR4 with the absence of TLR4 in TLR4 null mice resulting in a failure for seminal fluid to induce endometrial Csf3, Cxcl2, Il6 and Tnf expression. This study provides evidence that TLR4 contributes to seminal fluid modulation of the periconception immune environment. Activation of TLR4 signaling by microbial or endogenous components of seminal fluid is thus implicated as a key element of the female tract response to seminal fluid at the outset of pregnancy in mice.
TLR4 Signaling Is a Major Mediator of the Female Tract Response to Seminal Fluid in Mice.
Sex, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesOvulation requires sequential molecular events and structural remodeling in the ovarian follicle for the successful release of a mature oocyte capable of being fertilised. Critical to this process is progesterone receptor (PGR), a transcription factor highly yet transiently expressed in granulosa cells of preovulatory follicles. Progesterone receptor knockout (PRKO) mice are anovulatory, with a specific and complete defect in follicle rupture. Therefore, this model was used to examine the critical molecular and biochemical mechanisms necessary for successful ovulation.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesOvulation requires sequential molecular events and structural remodeling in the ovarian follicle for the successful release of a mature oocyte capable of being fertilised. Critical to this process is progesterone receptor (PGR), a transcription factor highly yet transiently expressed in granulosa cells of preovulatory follicles. Progesterone receptor knockout (PRKO) mice are anovulatory, with a specific and complete defect in follicle rupture. Therefore, this model was used to examine the critical molecular and biochemical mechanisms necessary for successful ovulation.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesSingle-cell RNA sequencing has generated the first catalogs of transcriptionally defined neuronal subtypes of the brain. However, the cellular processes that contribute to neuronal subtype specification and transcriptional heterogeneity remain unclear. By comparing the gene expression profiles of a subset of single layer 6 corticothalamic neurons in somatosensory cortex, we show that transcriptional subtypes primarily reflect axonal projection pattern, laminar position within the cortex, and neuronal activity state. Pseudotemporal ordering of 1023 cellular responses to sensory manipulation demonstrates that changes in expression of activity-induced genes both reinforced cell-type identity and contributed to increased transcriptional heterogeneity within each cell type. This is due to cell-type biased choices of transcriptional states following manipulation of neuronal activity. These results reveal that axonal projection pattern, laminar position, and activity state define significant axes of variation that contribute both to the transcriptional identity of individual neurons and to the transcriptional heterogeneity within each neuronal subtype. Overall design: 1023 single cell RNA-Seq and 6 bulk RNA-seq
Variation in Activity State, Axonal Projection, and Position Define the Transcriptional Identity of Individual Neocortical Projection Neurons.
Sex, Specimen part, Cell line, Subject
View Samples