The maize inbred line A661 shows a characteristic phenotype when grown at suboptimal temperatures for three weeks and then is exposed to optimal temperatures for one extra week. After this period the third leaf showed two well defined sections: distal (chlorophyll-less; CL) and proximal (chlorophyll-containing; CC) sections. To further investigate the performance of the inbred line A661 under cold conditions a gene expression profiling analysis was conducted using large scale maize microarrays. A total of 1002 transcripts change their expression between both leaf sections and the majority of these codify for proteins located to the chloroplast.
Genetic regulation of cold-induced albinism in the maize inbred line A661.
No sample metadata fields
View SamplesBrucella suis infects macrophages and dendritic cells. Wild boars act as reservoirs and carriers of Brucella suis biovar 2, and there is evidence that wild boar can be the main source of infection for domestic pigs through the venereal route. Transmission through this route could be an important path for disesease dissemination. The result from this study will contribute to the overall understanding of the molecular pathogenic mechanisms involved during Brucella suis infection in European wild boar.
Gene expression changes in spleens of the wildlife reservoir species, Eurasian wild boar (Sus scrofa), naturally infected with Brucella suis biovar 2.
Specimen part, Disease
View SamplesThe airway epithelium represents a critical component of the human lung that helps orchestrate defences against respiratory tract viral infections, which are responsible for more than 2.5 million deaths/year globally. Innate immune activities of the airway epithelium rely Toll-like receptors (TLRs), nucleotide binding and leucine-rich-repeat pyrin domain containing (NLRP) receptors, and cytosolic nucleic acid sensors. ATP Binding Cassette (ABC) transporters are ubiquitous across all three domains of life – Archaea, Bacteria, and Eukarya – and expressed in the human airway epithelium. ABCF1, a unique ABC family member that lacks a transmembrane domain, has been defined as a cytosolic nucleic acid sensor that regulates CXCL10, interferon-b expression, and downstream type I interferon responses. We tested the hypothesis that ABCF1 functions as a dsDNA nucleic acid sensor in human airway epithelial cells important in regulating antiviral responses.
ABCF1 Regulates dsDNA-induced Immune Responses in Human Airway Epithelial Cells.
Cell line
View SamplesUHRF1 is an essential regulator of DNA methylation that is highly expressed in many cancers. Using transgenic zebrafish, cultured cells and human tumors, we demonstrate that UHRF1 is an oncogene. RNAseq was used to assess the variation in gene expression between control and experimental samples. Overall design: Total small RNA from 2 batches of Tg(fabp10:has.UHRF1-GFP)High and age matched Tg(fabp10:nls-mCherry) control 5 dpf zebrafish livers was purified for preparation of high-throughput sequencing libraries.
UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma.
No sample metadata fields
View SamplesPseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in C. elegans. Approximately half of the hits were known antimicrobials. A large number of hits were non-antimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine anti-virulent compound, with no bacteriostatic or bacteriocidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa.
A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence.
Specimen part, Treatment
View SamplesBackground: Zidovudine remains the cornerstone drug for prophylaxis to prevent mother-to-child HIV-1 transmission. A mild but long-lasting hematological multilineage defect is observed in children exposed in utero.
Genotoxic signature in cord blood cells of newborns exposed in utero to a Zidovudine-based antiretroviral combination.
Specimen part, Treatment
View SamplesThe study recapitulates, through in vitro micropatterned co-cultures, interactions between HIV-infected T-lymphocytes and intestinal epithelial cells in order to investigate the mechanisms underlying the disruption of normal epithelial cell and barrier function during HIV infection. The co-culture method simplifies observation/monitoring of the two cell types and is particularly suited for laser microdissection-based retrieval of the epithelial cells for downstream gene expressions studies.
Micropatterned co-cultures of T-lymphocytes and epithelial cells as a model of mucosal immune system.
Specimen part, Cell line, Treatment
View SamplesStem and progenitor cells are the critical units for tissue maintenance, regeneration, and repair. The activation of regenerative events in response to tissue injury has been correlated with mobilization of tissue-resident progenitor cells, which is functional to the wound healing process. However, until now there has been no evidence for the presence of cells with a healing capacity circulating in healthy conditions. We identified a rare cell population present in the peripheral blood of healthy mice that actively participates in tissue repair. These Circulating cells, with a Homing ability and involved in the Healing process (CH cells), were identified by an innovative flowcytometry strategy as small cells not expressing CD45 and lineage markers. Their transcriptome profile revealed that CH cells are unique and present a high expression of key pluripotency- and epiblast-associated genes. More importantly, CH-labeled cells derived from healthy Red Fluorescent Protein (RFP)-transgenic mice and systemically injected into syngeneic fractured wild-type mice migrated and engrafted in wounded tissues, ultimately differentiating into tissue-specific cells. Accordingly, the number of CH cells in the peripheral blood rapidly decreased following femoral fracture. These findings uncover the existence of constitutively circulating cells that may represent novel, accessible, and versatile effectors of therapeutic tissue regeneration.
Identification of a New Cell Population Constitutively Circulating in Healthy Conditions and Endowed with a Homing Ability Toward Injured Sites.
Sex, Specimen part
View SamplesWe report a method for deriving oligodendrocyte lineage cells from human pluripotent stem cells (hPSCs) in three-dimensional (3D) culture called human oligodendrocyte spheroids (hOLS). To characterize oligodendrocyte-lineage cells in hOLS, we isolated O4+ cells by immunopanning and performed deep single cell RNA sequencing. We sequenced 295 cells and compared their profiles to unsorted cells isolated from primary human fetal cortex, primary human adult cortex, and hCS. Clustering of all cells using the t-distributed stochastic neighbor embedding (tSNE) approach revealed a distinct populations of SOX10+ oligodendrocytes, within which the O4+ cells derived from hOLS clustered most closely to oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes from the primary human adult cortical tissue. Additionally, subpopulations of OPCs, newly formed oligodendrocytes, and myelinating oligodendrocytes derived were observed in the hOLS-derived cluster. To further assess the state of oligodendrocyte-lineage cells in hOLS, we performed a Monocle analysis which revealed a spectrum of oligodendrocyte-lineage stages in hOLS ranging from dividing cells that closely resembled primary OPCs to mature cells that closely resembled primary oligodendrocytes. Overall design: Examination of gene expression in single oligodendrocyte-lineage cells derived from human pluripotent stem cells in three-dimensional culture
Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures.
Subject
View SamplesExpression profiling of sheep born to Australian industry sires with high and low genetic merit (Estimated Breeding Values or EBVs) for eye muscle depth (EMD). Progeny (40) from six Poll Dorset sires representing well defined extremes of EBVs for Eye Muscle Depth (low EBV EMD and high EBV EMD) were selected for analysis. The six sires were Australian industry sires with three sires representative of low EBV EMD and three representing high EBV EMD.
An Always Correlated gene expression landscape for ovine skeletal muscle, lessons learnt from comparison with an "equivalent" bovine landscape.
No sample metadata fields
View Samples