Emerging evidence suggests that tumor cells metastasize by co-opting stem cell transcriptional networks, although the molecular underpinnings of this process are poorly understood. Here, we show for the first time that the high mobility group A1 (HMGA1) gene drives metastatic progression in triple negative breast cancer cells (MDA-MB-231) by reprogramming cancer cells to a stem-like state. We discovered an HMGA1 signature in triple negative breast cancer cells that is highly enriched in embryonic stem cells. Together, these findings indicate that HMGA1 is a master regulator of tumor progression in breast cancer by reprogramming cancer cells through stem cell transcriptional networks. Future studies are needed to determine how to target HMGA1 in therapy.
HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells.
Specimen part, Cell line
View SamplesThe aim was to investigate the effect of postoperative intra-abdominal infection on the gene expression patterns of peripheral blood leukocytes (PBL) after surgery for colorectal cancer
Peripheral blood leucocytes show differential expression of tumour progression-related genes in colorectal cancer patients who have a postoperative intra-abdominal infection: a prospective matched cohort study.
Specimen part, Disease, Disease stage
View SamplesWe report here the genes that are sequentially expressed in white blood cells from blood and spleen at 2 hours, 2 day,3 days, and 7 days after burn and sham injury or trauma-hemorrhage (T-H) and sham T-H. Includes WBC treated with LPS for 2 hours and 1 day.
Comparison of longitudinal leukocyte gene expression after burn injury or trauma-hemorrhage in mice.
Specimen part, Treatment, Time
View SamplesThe precise makeup of chromatin remodeling complexes is important for determining cell type and cell function. The SWI/SNF chromatin remodeling complex is made up of multiple subunits that can be filled by mutually exclusive proteins. Inclusion or exclusion of these proteins has profound functional consequences, yet we currently understand little about the direct functional relationship between these biochemically distinct forms of remodeling complexes. Here we combine chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding information from the ENCODE project to determine the functional relationship between three biochemically distinct forms of SWI/SNF. We find widespread overlap in transcriptional regulation and the genomic binding of the three ARID (AT-Rich Interacting Domain) subunits of SWI/SNF. Despite the numerous similarities in their transcriptional regulation and the co-factors bound with each ARID we identify several novel interaction modalities. Previous work has found examples of competition or subunit switching at individual loci, and we find this functional relationship is widespread, and in these cases gene expression changes following loss of one ARID depend on the function of another ARID. We also identify a previously unknown cooperative interaction between ARID1B and ARID2 in the repression of a large number of genes. Together these data help untangle the complicated combinatorial relationships between a highly heterogenous chromatin remodeling family. Overall design: We performed depletion of ARID subunits (ARID1A , n=5; ARID1B, n=3, ARID2, n=5) of SWI/SNF using siRNA or a Non-Targeting control (N=6) and performed expression analysis using polyA+ selected RNA and a strand-specific dUTP incorporation library protocol.
Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.
No sample metadata fields
View SamplesVaccination reduces morbidity and mortality from pneumonia but its effect on the tissue-level response to infection is still poorly understood. We evaluated pneumonia disease progression, acute phase response and lung gene expression profiles in mice inoculated intranasally with virulent gram-positive Streptococcus pneumoniae serotype (ST) 3, with and without prior immunization with pneumococcal polysaccharide ST 3 (PPS3), or co-immunization with PPS3 and with a low dose of lipopolysaccharide (LPS). Pneumonia severity was assessed in the acute phase, 5, 12, 24 and 48 h post-inoculation (p.i.) and the resolution phase of 7 days p.i. Primary PPS3 specific antibody production was upregulated and IgM binding to pneumococci increased in PPS3-immunized mice. Immunizations with PPS3 or PPS3 + LPS decreased bacterial recovery the lung and blood at 24 and 48 h and increased survival. Microarray analysis of whole lung RNA revealed significant changes in the acute phase protein serum amyloid A (SAA) between noninfected and infected mice, which were attenuated by immunization. SAA transcripts were higher in the liver and lungs of infected controls, and SAA protein was elevated in serum, but decreased in PPS3-immunized mice. Thus, during a virulent pneumonia infection, prior immunization with PPS3 in an IgM-dependent manner as well as co-immunization with PPS3 + LPS attenuated pneumonia severity and promoted resolution of infection, concomitant with significant regulation of cytokine gene expression in the lungs, and acute phase proteins in the lungs, liver and serum.
Immunization with pneumococcal polysaccharide serotype 3 and lipopolysaccharide modulates lung and liver inflammation during a virulent Streptococcus pneumoniae infection in mice.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesExponentially growing cells and type II persister cells from the DS1-(hipQ)-strain
Novel protocol for persister cells isolation.
Specimen part, Disease, Cell line
View SamplesUsing gene expression profiling we characterize the global effect of p53 on the TLR5-mediated transcription in MCF7 cells. We found that combined activation of p53 and TLR5 pathways synergistically increases expression of over 200 genes, mostly associated with immunity and inflammation. The synergy was observed in several human cancer cells and primary lymphocytes.
p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways.
Cell line
View SamplesOligonucleotide and complementary DNA microarrays are being used to subclassify histologically similar tumours, monitor disease progress, and individualize treatment regimens. However, extracting new biological insight from high-throughput genomic studies of human diseases is a challenge, limited by difficulties in recognizing and evaluating relevant biological processes from huge quantities of experimental data. Here we present a structured network knowledge-base approach to analyse genome-wide transcriptional responses in the context of known functional interrelationships among proteins, small molecules and phenotypes. This approach was used to analyse changes in blood leukocyte gene expression patterns in human subjects receiving an inflammatory stimulus (bacterial endotoxin). We explore the known genome-wide interaction network to identify significant functional modules perturbed in response to this stimulus. Our analysis reveals that the human blood leukocyte response to acute systemic inflammation includes the transient dysregulation of leukocyte bioenergetics and modulation of translational machinery. These findings provide insight into the regulation of global leukocyte activities as they relate to innate immune system tolerance and increased susceptibility to infection in humans.
A network-based analysis of systemic inflammation in humans.
No sample metadata fields
View SamplesThe main objective of this study is to identify the list of genes differentially expressed between infected with Leishmania braziliensis and non-infected macrophage cultures based on gene expression microarray profiling
Changes in Macrophage Gene Expression Associated with Leishmania (Viannia) braziliensis Infection.
Specimen part
View SamplesThiazolidinediones increase tissue insulin sensitivity and are protective against worsening of nephropathy and hypertension in diabetes. Mechanisms underlying protection at the renal level likely involve a variety of unknown changes in gene expression. We examined kidney gene expression in obese and lean Zucker rats in response to rosiglitazone (Avandia), a peroxisome proliferator activated receptor (gamma-subtype) agonist. Lean and obese Zucker rats were treated with either control chow or chow with added rosiglitazone (3 mg/kgbw) for 12 weeks (n = 3/group). Total kidney mRNA expression was evaluated using the Affymetrix Rat Genome 230 2.0 GeneChip. 903 probe sets were significantly (P < 0.05) altered with at least 1.5-fold changes between groups. In untreated obese rats, 300 probe sets were increased and 244 decreased, relative to lean. Increased genes included the -subunit of the epithelial sodium channel (ENaC), the thiazide-sensitive Na-Cl cotransporter, and aquaporin 3. Decreased genes included angiotensin converting enzyme, type 1 (ACE1). FatiGO analysis showed that the highest number of altered genes between lean and obese belonged to the categories: ion binding, hydrolase activity, and protein binding. RGZ increased expression of uncoupling protein 1 (UCP1), CD36, and fatty acid binding protein 4 (FAbp4) in both lean and obese rats. In obese rats, 33 genes were normalized by RGZ (no longer different from lean) including ACE1, fatty acid synthase (Fasn), and stearoyl-coenzyme A desaturase 2 (Scd2). Ingenuity Pathways System analysis of genes upregulated by RGZ in obese rats revealed two major nodes affected: PPAR-gamma and tumor necrosis factor alpha (TNF-alpha).
Chronic rosiglitazone therapy normalizes expression of ACE1, SCD1 and other genes in the kidney of obese Zucker rats as determined by microarray analysis.
No sample metadata fields
View Samples