Communication between various ovarian cell types is a prerequisite for folliculogenesis and ovulation. In antral follicles granulosa cells divide into two distinct populations of mural (MGC) and cumulus granulosa cells (CGC), enveloping the antrum and surrounding the oocyte, respectively. IVF offers a good opportunity for analysing their functional properties since granulosa cells can be retrieved during the puncturing procedure of stimulated follicles. The aim of this study was to compare the transcriptomes of MGC and CGC in stimulated antral follicles obtained from 19 women undergoing IVF-ICSI procedure. MGC were obtained from follicular fluid and CGC were acquired after oocyte denudation for micromanipulation. Gene expression analysis was conducted using the genome-wide Affymetrix transcriptome array. The expression profile of the two granulosa cell populations varied significantly. Out of 28 869 analysed transcripts 4 480 were differentially expressed (q-value < 10-4) and 489 showed 2-fold difference in the expression level with 222 genes up-regulated in MGC and 267 in CGC. The transcriptome of MGC showed higher expression of genes involved in immune response, hematological system function and organismal injury, while CGC had genes involved in protein degradation and nervous system function up-regulated. Cell-to-cell signalling and interaction pathways were noted in both cell populations. Furthermore, numerous novel transcripts that have not been previously described in follicular physiology were identified. In conclusion, our results provide a solid basis for future studies in follicular biology that will help to identify molecular markers for oocyte and embryo viability in IVF.
The differential transcriptome and ontology profiles of floating and cumulus granulosa cells in stimulated human antral follicles.
Specimen part
View SamplesOne of the most common genetic alterations in acute myeloid leukemia is the internal tandem duplication (ITD) in the FLT3 receptor for cytokine FLT3 ligand (FLT3L). The constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on normal hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. We report that young pre-leukemic mice with the Flt3ITD knock-in allele manifest an expansion of all DCs including classical (cDCs) and plasmacytoid (pDCs). The expansion originated in DC progenitors, occurred in a cell-intrinsic manner and was further enhanced in Flt3ITD/ITD mice. The mutation caused the downregulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Flt3ITD mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T cells (Tregs). Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity in the absence of Tregs. Thus, the FLT3-ITD mutation directly affects DC development, thereby indirectly modulating T cell homeostasis and supporting Treg expansion. This effect of FLT3-ITD may subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. Overall design: Sorted splenic dendritic cell subsets from either Flt3+/+ or Flt3ITD/+ mice were sequenced for mRNA profiling. For each subset per genotype contains 2-3 replicates, all from independent experiments.
Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.
Specimen part, Cell line, Subject
View SamplesProgressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an inherited neurodegenerative disease with myoclonus, seizures and ataxia, caused by the mutations in cystatin B (CSTB) gene. In an approach towards understanding the molecular basis of pathogenic events in EPM1 we have utilized the cystatin B deficient mice (Cstb-/-), a model for the disease. We have characterized the gene expression changes from the cerebellum of Cstb-/- mouse at postnatal day 7 (P7) and P30 as well as in cultured cerebellar granule cells using a pathway-based approach. A marked upregulation of immune response genes was seen at P30, reflecting the ongoing neuropathology, however, the observed alterations in complement cascade genes could also imply defects in synaptic plasticity. Differentially expressed genes in pre-symptomatic Cstb-/- animals at P7 were connected to synaptic function and plasticity and in cultured cerebellar granule cells to cellular biogenesis, cytoskeleton and intracellular transport. Especially GABAergic pathways were affected.
Gene expression alterations in the cerebellum and granule neurons of Cstb(-/-) mouse are associated with early synaptic changes and inflammation.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View SamplesWe surveyed DNA methylation profiles of all human RefSeq promoters in relation to gene expression and differentiation in adipose tissue, bone marrow and muscle mesenchymal progenitors, as well as in bone marrow-derived hematopoietic progenitors. We unravel strongly overlapping DNA methylation profiles between adipose stem cells (ASCs), bone marrow mesenchymal stem cells (BMMSCs) and muscle progenitor cells (MPCs), while hematopoietic progenitor cells (HPCs) are more epigenetically distant from MSCs seen as a whole. Differentiation resolves a fraction of methylation patterns common to MSCs, generating epigenetic divergence.
Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage.
Specimen part
View SamplesThe object of this study was to investigate the effect of elevated glucose concentrations (15 and 25 mM glucose) on gene expression in undifferentiated and adipogenic differentiated ASCs.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View SamplesThe aim of this study was to characterize basal gene expression for proliferating adipose tissue MSCs, cultured at normal cell culture conditions.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View SamplesExpression data were generated on 136 subjects from the COPDGene study using Affymetrix microarrays. Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, pack years) was used to identify candidate genes and Ingenuity Pathway Analysis was used to identify candidate pathways.
Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease.
Sex, Specimen part
View SamplesAll living cells rely on the communication with other cells to ensure their function and survival. Molecular signals are sent among cells of the same cell type and from cells of one cell type to another. In cancer, not only the cancer cells themselves are responsible for the malignancy, but also stromal (non-cancerous) cells and the molecular signals they send to cancer cells are important factors that determine the severity and outcome of the disease. Therefore, the identification of stromal signals and their influence on cancer cells is important when looking for novel treatment strategies.
Causal Modeling of Cancer-Stromal Communication Identifies PAPPA as a Novel Stroma-Secreted Factor Activating NFκB Signaling in Hepatocellular Carcinoma.
Specimen part
View Samples