The purpose of this study was to evaluate the effect of fish oil-derived n-3 PUFA therapy, which had statistically and clinically significant beneficial effects on muscle mass and strength, on skeletal muscle gene expression profile.
Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults.
Sex, Specimen part
View SamplesThe purpose of this study was to conduct a randomized-controlled trial to evaluate the effect of a high-protein (HP) diet weight loss (WL) on changes in body composition, insulin sensitivity and skeletal muscle gene expression profile in postmenopausal women who were obese and randomized to one of three dietary intervention groups: 1) a weight maitenance group, 2) a weight loss group (normal protein intake, 0.8 g protein/kg body weight per day) and 3) a weight loss group (high protein intake, 1.2 g protein/kg body weight per day) and studies before and after they lost 10% of their body weight (WL groups) or a time-matched weight maintenacne period.
High-Protein Intake during Weight Loss Therapy Eliminates the Weight-Loss-Induced Improvement in Insulin Action in Obese Postmenopausal Women.
Specimen part, Disease stage, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals.
Specimen part, Cell line, Time
View SamplesWe aim to understand the role that Cdx2 plays in specifying the rostro-caudal identity of differentiating motor neurons. We find that expressing Cdx2 in combination with FGF signaling is sufficient to produce motor neurons with a more caudal identity. ChIP-seq analysis of Cdx2 finds that it binds extensively throughout the Hox regions in progenitor motor neurons. Analysis of polycomb-associated chromatin over Hox regions in the subsequently generated motor neurons finds that Cdx2 binding corresponds to chromatin domains encompassing de-repressed caudal Hox genes. These results suggest a direct role for Cdx2 in specifying caudal motor neuron identity.
Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals.
Specimen part, Cell line, Time
View SamplesSuz12(Bgal/Bgal) ESCs express a truncated form of Suz12 fused to Beta-galactosidase. These cells maintain a reduced level of H3K27me3 despite this mutation to a core component of PRC2, unlike Eed-/- ESCs whose H3K27me3 is ablated. Overall design: RNA-seq was performed in wild type and Suz12(Bgal/Bgal) ESCs, here used to demonstrate the coverage of the Suz12 gene in mRNA reads.
Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals.
Specimen part, Cell line, Subject
View SamplesFlower maturation consists of several events that contribute to reproductive success as flowers open, including petal expansion, stamen filament elongation, pollen release, nectary maturation, stigma growth, and gynoecium maturation to support pollen tube growth. The Arabidopsis transcription factors ARF6 (Auxin Response Factor 6) and ARF8 regulate all of these processes, in part by activating jasmonate biosynthesis. Jasmonates in turn activate genes encoding the transcription factors MYB21 and MYB24, which mediate a subset of the processes controlled by ARF6 and ARF8. This experiment was designed to characterize gene expression in flowers before and after they open, and to determine how arf6 arf8 and myb21 myb24 mutation combinations affect these gene expression patterns.
A regulatory network for coordinated flower maturation.
No sample metadata fields
View SamplesMammalian lung development is a complex morphogenetic process, which initiates near mid-gestation and continues through early postnatal life. The lung arises as two lateral buds that emerge from the ventral foregut endoderm at ~ 9 days after fertilization (in mouse) and undergo numerous rounds of dichotomous branching to form the bronchial tree. This stage of development is referred to as the pseudoglandular phase, histologically characterized by loose mesenchyme surrounding undifferentiated epithelial tubes.
Expression profiling of the developing mouse lung: insights into the establishment of the extracellular matrix.
No sample metadata fields
View SamplesLong non-coding RNAs (lncRNAs) are expressed in a highly tissue-specific manner where they function in various aspects of cell biology, often as key regulators of gene expression. In this study we established a role for lncRNAs in chondrocyte differentiation. Using RNA sequencing we identified a human articular chondrocyte repertoire of lncRNAs from normal hip cartilage donated by neck of femur fracture patients. Of particular interest are lncRNAs upstream of the master chondrocyte transcription factor SOX9 locus. SOX9 is an HMG-box transcription factor which is essential for chondrocyte development by directing the expression of chondrocyte specific genes. Two of these lncRNAs are upregulated during chondrogenic differentiation of MSCs. Depletion of one of these lncRNA, LOC102723505, which we termed ROCR (regulator of chondrogenesis RNA), by RNAi disrupted MSC chondrogenesis, concomitant with reduced cartilage-specific gene expression and incomplete matrix component production, indicating an important role in chondrocyte biology. Specifically, SOX9 induction was significantly ablated in the absence of ROCR, and overexpression of SOX9 rescued the differentiation of MSCs into chondrocytes. Our work sheds further light on chondrocyte specific SOX9 expression and highlights a novel method of chondrocyte gene regulation involving a lncRNA. Overall design: Human neck of femure fracture hip cartilage chondrocyte mRNA profile generated by RNA-seq
Expression analysis of the osteoarthritis genetic susceptibility mapping to the matrix Gla protein gene MGP.
Sex, Age, Specimen part, Subject
View SamplesTranscriptomes of mouse embryonic autopods were generated detecting expression of approximately 26179 transcripts in the developing forelimb or hindlimb autopods, representing about 58 % of the probe sets on MOE-430 A/B GeneChip. Three biological replicate array experiments were finished for each condition and MAS5.0 signal were used to do data analysis. Forty-four transcripts with expression differences higher than 2-fold were detected(T test, P<0.05), including Tbx4, Tbx5, Hoxc10 and Pitx1 which were previously shown to be differentially expressed in developing forelimb and hindlimb bud by in situ hybridization and SAGE study (Margulies 2001). RTPCR and in situ experiments confirmed several top differentially expressed genes which were newly discovered by our experiments. Vast amount of transcripts and its family members such as Bmp, Fgf, Epha, Wnt, T-box and Hox families detected to be highly expressed or differentially expressed in developing autopods, suggesting that the complexity of transcriptomes of developing autopods and dynamic differential expression and differential combinations of gene expression signals in the developing limb tissue contributes to differences in forelimb versus hindlimb patterning. The differentially expressed genes are the essential factors for morphological diversification of developing limb structures.
Transcriptome analysis of the murine forelimb and hindlimb autopod.
No sample metadata fields
View SamplesThe closure of an open anatomical structure by the directed growth and fusion of two tissue masses is a recurrent theme in mammalian embryology, and this process plays an integral role in the development of the palate, ventricular septum, neural tube, urethra, diaphragm, and eye. In mice, targeted mutations of the genes encoding frizzled1 (Fz1) and frizzled2 (Fz2) show that these highly homologous integral membrane receptors play an essential and partially redundant role in closure of the palate and ventricular septum, and in the correct positioning of the cardiac outflow tract. When combined with a mutant allele of the planar cell polarity (PCP) gene Vangl2 (Vangl2Lp), Fz1 and/or Fz2 mutations also cause defects in neural tube closure and mis-orientation of inner ear sensory hair cells. These observations indicate that frizzled signaling is involved in diverse tissue closure processes, defects in which account for some of the most common congenital anomalies in humans.
Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes.
Sex, Specimen part
View Samples