Inhibition of miR-33 results in increased cholesterol efflux and HDL-cholesterol levels in mice. In this study we examined the effect of miR-33 inhibition in a mouse model of atherosclerosis and observed significant reduction in atherosclerotic plaque size. At the end of the study, gene expression in macrophages from the atherosclerotic plaques was assessed.
Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hippo/Mst signaling coordinates cellular quiescence with terminal maturation in iNKT cell development and fate decisions.
Specimen part, Disease
View SamplesRegulatory T (Treg) cell activation and expansion during neonatal life and in response to inflammation are critical for immunosuppression, yet the mechanisms governing these events are incompletely understood. We report that the oncogene and transcriptional regulator c-Myc (Myc) controls immune homeostasis through regulation of Treg cell accumulation and functional activation. Myc activity is enriched in Treg cells generated during neonatal life and responding to inflammation. Myc-deficient Treg cells show cell-intrinsic defects in overall accumulation and ability to transition to an activated state during early life or acute inflammation. Consequently, loss of Myc in Treg cells results in a rapid, early-onset autoimmune disorder accompanied by uncontrolled effector CD4+ and CD8+ T cell responses. We also provide evidence that Myc regulates mitochondrial oxidative metabolism but is dispensable for fatty acid oxidation (FAO). Indeed, Treg cell-specific deletion of Cox10, which is required for oxidative phosphorylation, but not Cpt1a, the rate-limiting enzyme for FAO, results in impaired Treg cell function and maturation. Thus, Myc coordinates Treg cell accumulation, transitional activation and metabolic programming to orchestrate immune homeostasis.
Homeostasis and transitional activation of regulatory T cells require c-Myc.
Specimen part
View SamplesOrganophosphorus compounds may induce neurotoxicity through mechanisms other than the cholinergic pathway, which need to be unraveled by a comprehensive and systematic approach such as genome-wide gene expression analysis.
Toxicogenomic studies of human neural cells following exposure to organophosphorus chemical warfare nerve agent VX.
Specimen part
View SamplesPlasmodium falciparum malaria severely impacts human health. In order to broaden our understanding of merozoite invasion of erythrocytes which is responsible for clinical disease, a P. falciparum -irradiated "long-lived merozoite" (LLM) line was investigated. Cell-sieve purified LLM invaded human erythrocytes with an improved efficiency of 10- to 300-fold greater than wild-type (WT) parasites. A comparison of their genomes identified limited changes in the open reading frame of LLM; while only marginal differences were observed in the transcriptomes. Analysis of their proteomes by quantitative mass-spectrometry identified 446 out of 981 proteins of known or unknown function with a significant change in protein abundance (ANOVA p < 0.05). Furthermore, the relative molar concentration of nearly 1100 merozoite proteins was established. Unfortunately, a specific change being responsible for the LLM phenotype was not identified. However, immunoblot analyses of LLM lysates showed proteolytic processing of some proteins of the MSP1 complex and AMA1 were delayed, suggesting that this delayed proteolysis positively impacted merozoite viability and subsequent invasion.
Profiling invasive Plasmodium falciparum merozoites using an integrated omics approach.
No sample metadata fields
View SamplesTranscriptome analysis by RNAseq of leukemia model promoted by MLL-Af4 or MLL-AF9 fusion proteins. We find each fusion protein promotes a specific gene signature correlating to those identified in patients Overall design: Human CD34+ hematopoietic stem and progenitor cells were transduced with retrovirus expressing MLL-Af4 or MLL-AF9. Transduced cells were transplanted into immunodeficient mice to induce lymphoid leukemia or placed in myeloid in vitro culture. CD19+ lymphoid leukemia cells (3 AF9, 6 Af4), control health CD19+CD34+ proB cells (n=3) and 4 pairs of Af4 and AF9 CD33+CD19- myeloid culture cells were collected for RNA-seq
Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia.
No sample metadata fields
View SamplesLung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC) as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor “activated/reprogrammed” stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM)-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils) identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN), chemokine (C-C motif) ligand 7 (CCL7) and thrombospondin 1 (TSP1) were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value. Overall design: We sorted pure populations of the immature monocytic myeloid cells (IMMCs), neutrophils (Neu), and epithelial cells (Epi) from tumors and adjacent lung tissues of stage I-III lung adenocarcinoma patients. RNA samples (totally 17 samples) were sequenced: from tumor IMMC (n=3), Neu (n=2), Epi (n=2); from adjacent lung IMMC (n=3), Neu (n=4), Epi (n=3).
Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC.
No sample metadata fields
View SamplesIschemic cardiopathy is the leading cause of death in the world, for which efficient regenerative therapy is not currently available. In mammals, after a myocardial infarction episode, the damaged myocardium is replaced by scar tissue featuring collagen deposition and tissue remodelling with negligible cardiomyocyte proliferation. Zebrafish, in contrast, display an extensive regenerative capacity as they are able to restore completely lost cardiac tissue after partial ventricular amputation. Due to the lack of genetic lineage tracing evidence, it is not yet clear if new cardiomyocytes arise from existing contractile cells or from an uncharacterised set of progenitors cells. Nonetheless, several genes and molecules have been shown to participate in this process, some of them being cardiomyocyte mitogens in vitro. Though questions as what are the early signals that drive the regenerative response and what is the relative role of each cardiac cell in this process still need to be answered, the zebrafish is emerging as a very valuable tool to understand heart regeneration and devise strategies that may be of potential value to treat human cardiac disease. Here, we performed a genome-wide transcriptome profile analysis focusing on the early time points of zebrafish heart regeneration and compared our results with those of previously published data. Our analyses confirmed the differential expression of several transcripts, and identified additional genes the expression of which is differentially regulated during zebrafish heart regeneration. We validated the microarray data by conventional and/or quantitative RT-PCR. For a subset of these genes, their expression pattern was analyzed by in situ hybridization and shown to be upregulated in the regenerating area of the heart. The specific role of these new transcripts during zebrafish heart regeneration was further investigated ex vivo using primary cultures of zebrafish cardiomyocytes and/or epicardial cells. Our results offer new insights into the biology of heart regeneration in the zebrafish and, together with future experiments in mammals, may be of potential interest for clinical applications.
Transcriptomics approach to investigate zebrafish heart regeneration.
Specimen part, Time
View SamplesThe expression profiles of 64 neuroblastic tumors (mainly neuroblastoma) were determined on Affymetrix chips HG U133 Plus 2.0.
Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma.
No sample metadata fields
View Samples15-25% of breast cancers (BC) show ERBB2-amplification and overexpression of the encoded ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs may help understand their behavior and design new therapeutic strategies. In this study, we defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. We first identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, we identified 17 genome regions affected by copy number aberration (CNA). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) ERBB2-amplified BCs were different. The WNT/-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2-amplicon was different in inflammatory (IBC) and non inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. We have shown that ERBB2 BCs are heterogeneous and identified genomic features that may be useful in the design of therapeutical strategies
Genome profiling of ERBB2-amplified breast cancers.
No sample metadata fields
View Samples