Plants are sessile organisms and therefore must sense and respond to changes of their surrounding conditions such as ambient temperature, which vary diurnally and seasonally. It is not yet clear how plants sense temperature and integrate this information into their development. We have previously shown that H2A.Z-nucleosomes are evicted in response to warmer temperatures. It is not clear however, whether the link between transcriptional responsiveness and changes in H2A.Z binding in context of temperature shifts is a global trend that can be seen throughout the genome, or the phenomenon is specific to a specialised set of temperature-responsive genes. In addition to the role of H2A.Z-nucleosome dynamics in the transcriptional response to temperature, it was shown that genes strongly misregulated in the h2a.z mutant are enriched for gene categories involved in response to multiple environmental cues. This suggests that H2A.Z could be implicated in the transcriptional response to various environmental inputs, raising the question: What brings the specificity of H2A.Z dynamics in response to temperature? To address this question we have profiled H2A.Z-nucleosome occupancy genome wide (using ChIP-seq) during a time course after temperature variation and compared its dynamics to transcriptional changes. We identified a fast, targeted and transient eviction of H2A.Z associated with transcriptional activation in response to temperature for a few hundreds genes. This eviction is associated with a reduction of the stability of the nucleosome. Moreover the genes with a fast H2A.Z eviction were strongly enriched in heat shock elements in their promoter and we observed a strong association between HSF1 binding and H2AZ eviction at warm temperature. These results highlight the importance of the interplay between transcription factors and chromatin to allow a controlled and dynamics response to temperature. Overall design: RNA-seq were generated in duplicate for seedlings shifted to warm temperature
Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis.
Subject
View SamplesPlants are sessile organisms and therefore must sense and respond to changes of their surrounding conditions such as ambient temperature, which vary diurnally and seasonally. It is not yet clear how plants sense temperature and integrate this information into their development. We have previously shown that H2A.Z-nucleosomes are evicted in response to warmer temperatures. It is not clear however, whether the link between transcriptional responsiveness and changes in H2A.Z binding in context of temperature shifts is a global trend that can be seen throughout the genome, or the phenomenon is specific to a specialised set of temperature-responsive genes. In addition to the role of H2A.Z-nucleosome dynamics in the transcriptional response to temperature, it was shown that genes strongly misregulated in the h2a.z mutant are enriched for gene categories involved in response to multiple environmental cues. This suggests that H2A.Z could be implicated in the transcriptional response to various environmental inputs, raising the question: What brings the specificity of H2A.Z dynamics in response to temperature? To address this question we have profiled H2A.Z-nucleosome occupancy genome wide (using ChIP-seq) during a time course after temperature variation and compared its dynamics to transcriptional changes. We identified a fast, targeted and transient eviction of H2A.Z associated with transcriptional activation in response to temperature for a few hundreds genes. This eviction is associated with a reduction of the stability of the nucleosome. Moreover the genes with a fast H2A.Z eviction were strongly enriched in heat shock elements in their promoter and we observed a strong association between HSF1 binding and H2AZ eviction at warm temperature. These results highlight the importance of the interplay between transcription factors and chromatin to allow a controlled and dynamics response to temperature. Overall design: RNA-seq were generated in duplicate for seedlings shifted to warm temperature
Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis.
Subject
View SamplesCritically ill intensive care unit (ICU) patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decrease quality of life of survivors. Acute Quadriplegic Myopathy (AQM) is one of the most common neuromuscular disorders associated with ICU-acquired muscle weakness. Although there are no available treatments for the ICU-acquired muscle weakness, it has been demonstrated that early mobilization can improve its prognosis and functional outcomes. This study aims at improving our understanding of the effects of passive mechanical loading on skeletal muscle structure and function by using a unique experimental rat ICU model allowing analyses of the temporal sequence of changes in mechanically ventilated and pharmacologically paralyzed animals at durations varying from 6 h to 14 days. Results show that passive mechanical loading alleviated the muscle wasting and the loss of force-generation associated with the ICU intervention, resulting in a doubling of the functional capacity of the loaded vs. unloaded muscles after a 2-week ICU intervention. We demonstrated that the improved maintenance of muscle structure and function is likely a consequence of a reduced oxidative stress, and a reduced loss of the molecular motor protein myosin. A complex temporal gene expression pattern, delineated by microarray analysis, was observed with loading-induced changes in transcript levels of sarcomeric proteins, muscle developmental processes, stress response, ECM/cell adhesion proteins and metabolism. Thus, the results from this study show that passive mechanical loading alleviates the severe negative consequences on muscle structure and function associated with mechanical silencing in ICU patients, strongly supporting early and intense physical therapy in immobilized ICU patients.
Sparing of muscle mass and function by passive loading in an experimental intensive care unit model.
Sex, Specimen part, Time
View SamplesHIV-associated dementia (HAD) is a syndrome occurring in HIV-infected patients with advanced disease that likely develops as a result of macrophage and microglial activation as well as other immune events triggered by virus in the central nervous system. The most relevant experimental model of HAD, rhesus macaques exhibiting SIV encephalitis (SIVE), closely reproduces the human disease and has been successfully used to advance our understanding of mechanisms underlying HAD. In this study we integrate gene expression data from uninfected and SIV-infected hippocampus with a human protein interaction network and discover modules of genes whose expression patterns distinguish these two states, to facilitate identification of neuronal genes that may contribute to SIVE/HIV cognitive deficits. Using this approach we identify several downregulated candidate genes and select one, EGR1, a key molecule in hippocampus-related learning and memory, for further study. We show that EGR1 is downregulated in SIV-infected hippocampus and that it can be downregulated in differentiated human neuroblastoma cells by treatment with CCL8, a product of activated microglia. Integration of expression data with protein interaction data to discover discriminatory modules of interacting proteins can be usefully employed to prioritize differentially expressed genes for further study. Investigation of EGR1, selected in this manner, indicates that its downregulation in SIVE may occur as a consequence of the host response to infection, leading to deficits in cognition.
An integrated systems analysis implicates EGR1 downregulation in simian immunodeficiency virus encephalitis-induced neural dysfunction.
Sex
View SamplesExpansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, while evidence supports the replicative capacity of adult beta cells in vivo, attempts at expanding human islet cells in tissue culture resulted in loss of beta-cell phenotype. Using a genetic lineage-tracing approach we have provided evidence for massive proliferation of beta-cell-derived (BCD) cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT). Epigenetic analyses indicate that key beta-cell genes maintain a partially open chromatin structure in expanded BCD cells, although they are not transcribed. Here we report that BCD cells can be induced to redifferentiate by a combination of soluble factors. The redifferentiated cells express beta-cell genes, store insulin in typical secretory vesicles, and release it in response to glucose. The redifferentiation process involves mesenchymal-epithelial transition, as judged from changes in gene expression. Moreover, inhibition of the EMT effector SLUG using shRNA results in stimulation of redifferentiation. BCD cells also give rise at a low rate to cells expressing other islet hormones, suggesting transition through an islet progenitor-like stage during redifferentiation. These findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug screening.
Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.
Specimen part
View SamplesAccess to an unlimited number of human pancreatic beta cells represents a major challenge in the field of diabetes to better dissect human beta cell functions and to make significant progress in drug discovery and cell replacement therapies. We previously reported the generation of the EndoC-bH1 human beta cell line that was generated by targeted oncogenesis in human fetal pancreases followed by in vivo cell differentiation in mice. Such cell line displayed many functional properties of adult beta cells. Here we devised a novel strategy to generate conditionally immortalized human beta cell lines based on CRE-mediated excision of immortalizing transgenes. The resulting EndoC-bH2 cell line can be massively amplified in vitro. Transgenes are next efficiently excised upon CRE expression leading to cell proliferation arrest and strong enhancement of beta cell specific features such as insulin expression, content and secretion. Excised EndoC-bH2 cells are close to authentic human beta cells and represent a unique tool to further study beta cell function and to understand why adult human beta cells are refractory to proliferation and how to achieve drug-dependent mobilization towards beta cell expansion.
Development of a conditionally immortalized human pancreatic β cell line.
Specimen part
View SamplesAims/hypothesis: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it.
Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming.
Specimen part
View SamplesOligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain, and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective adaptive (re)myelination. OPC differentiation requires significant genetic reprogramming implicating chromatin remodeling. Mounting evidence indicates that chromatin remodelers play important roles during normal development and their mutations are associated with neurodevelopmental defects, with CHD7 haploinsuficiency being the cause of CHARGE syndrome and CHD8 being one of the strongest Autism Spectrum Disorder (ASD) high-risk associated genes. Here, we report on uncharacterized functions of the chromatin remodelers Chd7 and Chd8 in OPCs. Their OPC-chromatin-binding profile combined with transcriptome and chromatin accessibility analyses of Chd7-deleted OPCs, demonstrates that Chd7 protects non-proliferative OPCs from apoptosis by chromatin-closing and transcriptional repression of p53. Furthermore, Chd7 controls OPC differentiation through chromatin-opening and transcriptional activation of key regulators, including Sox10, Nkx2.2 and Gpr17. Chd7 is however dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin binding profiles and genetic interaction. Finally, CHD7 and CHD8 bind in OPCs to a majority of ASD-risk associated genes, suggesting an implication of oligodendrocyte lineage cells in ASD neurological defects. Our results thus offer new avenues to understand and modulate the CHD7 and CHD8 functions in normal development and disease. Overall design: RNA-seq from Chd7iKO and Control O4+ soted cells
Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8.
Specimen part, Subject
View SamplesWe have previously identified hundreds of human islet lncRNAs. Here we functionally characterise 12 such lncRNAs in EndoC-betaH1 cells through loss of function studies.
Human Pancreatic β Cell lncRNAs Control Cell-Specific Regulatory Networks.
Cell line
View SamplesComparison of gene expression profiles of the GL261 cell line (a murine glioma model) grown in duplicate in two different types of media. AC samples where grown in DMEM supplemented by 20% FBS, 5 U/ml pen/strep and 4 mM L-glutamine. NS samples were grown in DMEM/F12 (50/50) supplemented with 2 U/ml pen/strep, 1 ug/ml fungizone, 1x B27, 20 ng/ml bFGF, 20 ng/ml EGF, 20 ng/ml LIF and 5 ug/ml heparin. We have reason to believe the NS media enhances cell de-differentiation.
Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas.
Specimen part, Cell line
View Samples