Baseline gene expression of adipose stem cell derived iPSCs generated by lentiviral Yamanaka 4 factors. We used microarrays to analyze the global gene expression of hACS derived iPSCs with KMOS and KMOS+miR-302.
MicroRNA-302 increases reprogramming efficiency via repression of NR2F2.
Specimen part
View SamplesTo elucidate the gene expression footprint of antigenically challenged T-cells which had been treated with anti-LFA-1, CTLA4Ig, anti-CD40-ligand antibodies, we performed microarray gene expression analysis comparing the expression profile of costimulatory blockade treated and untreated responder T-cells.
Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells.
Specimen part
View SamplesMicroglia-like cells and neural cells were generated from several hES and hIPS lines. As subset was characterized by RNA seq and compared to expression profiles of published primary and induced samples. ABSTRACT: Microglia, the only lifelong resident immune cells of the central nervous system (CNS), are highly specialized macrophages which have been recognized to play a crucial role in neurodegenerative diseases such as Alzheimer's, Parkinson's and Adrenoleukodystrophy (ALD). However, in contrast to other cell types of the human CNS, bona fide microglia have not yet been derived from cultured human pluripotent stem cells. Here we establish a robust and efficient protocol for the rapid production of microglia-like cells from human embryonic stem (ES) and induced pluripotent stem (iPS) cells that uses defined serum-free culture conditions. These in vitro pluripotent stem cell-derived microglia-like cells (termed pMGLs) faithfully recapitulate the expected ontogeny and characteristics of their in vivo counterparts and resemble primary fetal human and mouse microglia. We generated these cells from multiple disease-specific cell lines, and find that pMGLs derived from MeCP2 mutant hES cells are smaller than their isogenic controls. We further describe a culture platform to study integration and live behavior of pMGLs in organotypic 3D-cultures. This modular differentiation system allows the study of microglia in highly defined conditions, as they mature in response to developmentally relevant cues, and provides a framework to study the long-term interaction of microglia residing in a tissue-like environment. Overall design: Individual donors/genetic backgrounds. Dataset inlcudes 4 differentiated neural progenitor biological replicates (NPC1-4), 2 primary fetal microglia samples as reference, 5 induced microglia samples grown in basal medium (pMGL1-5), 3 induced microglia samples grown in neural conditioned medium (pMGL1-3+NCM)
Efficient derivation of microglia-like cells from human pluripotent stem cells.
Subject
View SamplesMicroglia are the resident myeloid-lineage cells in the central nervous system. Despite myriad observations of microglia associated with various tissue pathologies in degenerative disease, their function in and contributions to the pathophysiological processes remain unclear. It is particularly uncertain whether microglia act harmfully to contribute to worsening of degeneration, act beneficially to combat disease-related dysfunction, or perform functions that result in both outcomes. In this dataset, we report RNA sequencing results from mice that undergo inducible ALS/FTLD-like degeneration and subsequent recovery. The goals were to identify whether microglia show transcriptional signatures commensurate with the disease stage or if they remain constant throughout. Additionally, we sought to understand whether there was a particular transcriptional or functional signature associated with functional recovery in the mice. The latter could lead to an understanding of how microglia may be targeted to combat disease and enhance recovery following or during degeneration. Overall design: mRNA profiles from microglia sorted from whole-spinal cord taken from doxycycline (DOX) inducible NEFH-tTa/tetO-208-hTDP43 (rNLS8, (+/+)) mice. In these mice, removal of doxycycline from the diet (DOX-OFF) induces transgenic expression and degeneration and reintroduction (DOX-ON) suppresses expression and enables recovery. We report profiles from rNLS8 mice that were DOX-OFF for 2 weeks (N=8) or 6 weeks (N=7), or DOX-OFF for 6 weeks followed by DOX-ON for 1 week (N=9). We also report profiles from control samples that include: rNLS8 mice that were DOX-ON for 6 weeks (N = 6) as asymptomatic genetic controls and WT (-/-) littermates that were DOX-OFF for 2 weeks (N=4), 6 weeks (N=1), or DOX-OFF for 6 weeks followed by 1 week DOX-ON (N=3) as asymptomatic doxycycline controls.
Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy.
Sex, Specimen part, Cell line, Subject
View SamplesCxcr7-/- mice die a few hours after birth. All of them display semilunar valves abnormalities, including bicuspid aortic or pulmonary valves. Those defects only become obvious before birth.
Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7.
No sample metadata fields
View SamplesCompares shFOXO4 vs. Control in LNCaP grown in culture, or in nude mice as primary orthotopic tumors or lymph node metastases
A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer.
Specimen part
View Samplesmicroarray was done on Heart tissue from ko and wt
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2.
No sample metadata fields
View SamplesCotton fiber were used for the expression analysis at different developmental stages
Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L.
No sample metadata fields
View SamplesTo assess in vitro derived podocytes, we examined the transcriptional changes during human podocyte development and applied that knowledge to pinpoint strengths and limitations of hESC-derived podocytes. Overall design: We performed transcriptionaling profiling of kidney organoids and organoid-derived MAFB-eGFP+ podocytes at various differentiation time points.
In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes.
Subject
View SamplesBackground: Pandemic H1N1 influenza A is a newly emerging strain of human influenza that is easily transmitted between people and has spread globally to over 116 countries. Human infection leads to symptoms ranging from mild to severe with lower respiratory complications observed in a small but significant number of infected individuals. Little is currently known about host immunity and Pandemic H1N1 influenza infections.
Modeling host responses in ferrets during A/California/07/2009 influenza infection.
Specimen part
View Samples