As exposure to episodic drought can impinge significantly on forest health and the establishment of productive tree plantations, there is great interest in understanding the mechanisms of drought response in trees. The ecologically dominant and economically important genus Populus, with its sequenced genome, provides an ideal opportunity to examine transcriptome level changes in trees in response to a drought stimulus. The transcriptome level drought response of two commercially important hybrid Populus clones (P. deltoides P. nigra, DN34, and P. nigra P. maximowiczii, NM6) was characterized over a diurnal period using a 4 2 2 completely randomized factorial ANOVA experimental design (four time points, two genotypes, and two treatment conditions) using Affymetrix Poplar GeneChip microarrays. Notably, the specific genes that exhibited changes in transcript abundance in response to drought differed between the genotypes and/or the time of day that they exhibited their greatest differences. This study emphasizes the fact that it is not possible to draw simple, generalized conclusions about the drought response of the genus Populus on the basis of one species, nor on the basis of results collected at a single time point. The data derived from our studies provide insights into the variety of genetic mechanisms underpinning the Populus drought response, and provide candidates for future experiments aimed at understanding this response across this economically and ecologically important genus.
Genotype and time of day shape the Populus drought response.
Age, Specimen part, Treatment
View SamplesTranscriptome dynamics of nucellus in early maize seed
High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development.
Age, Specimen part
View SamplesTranscriptional profiling of a DEX-inducible SNRK3.15 seedlings in the presence of ABA.
A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis.
Age, Time
View SamplesExperience-dependent plasticity (EDP) is essential for anatomical and functional maturation of sensory circuits during development and can be readily studied is the rodent barrel cortex. Using this model we aimed to uncover changes on the transcriptome level and applied RNA sequencing upon altered sensory experience in juvenile mice in a cortical column and layer specific manner. From column- and layer-specific barrel cortical tissue, high quality RNA was purified and sequenced. The current dataset entails an average of 50 million paired-end reads per sample, 75 base pairs in length. Overall design: Wild type mice were deprived of their C-row whiskers from P12 until P23-P24, after which acute brain slices were prepared and tissues were excised from L2/3 and L4 from specific barrel columns. RNA isolated from these tissue sections was then subjected to RNA-sequencing.
Transcriptional mapping of the primary somatosensory cortex upon sensory deprivation.
Cell line, Subject
View SamplesThe identification of the most appropriate T-cell subset to ensure optimal persistence and anti-tumor activity is a major goal of cancer immunotherapy. We identified a novel post-mitotic CD45RA+CD62L+ T cell subpopulation (TTN), generated in vitro upon activation of nave T (TN) cells with beads conjugated to anti-CD3 and anti-CD28 antibodies. This cell population is highly proliferative, produces low levels of IFNg and cytotoxic molecules, and requires IL-7 and IL-15 for in vitro expansion.
IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors.
No sample metadata fields
View SamplesThe entorhinal cortex of the mouse seems to be sensitive to molecular mechanisms that have been linked to the pathology of Alzheimer's disease. In this microarray study we are interested in comparing the expression profile of the left versus the right EC of the mouse, in order to understand if there is a significant difference in gene expression that might reveal any insights into the differential activation of these areas.
Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease.
Age, Specimen part
View SamplesPURPOSE: Hyperoxia is toxic to photoreceptors, and this toxicity may be important in the progress of retinal dystrophies. This microarray study examines gene expression induced in the C57BL/6J mouse retina by hyperoxia over the 14-day period during which photoreceptors first resist, then succumb to, hyperoxia. METHODS: Young adult C57BL/6J mice were exposed to hyperoxia (75% oxygen) for up to 14 days. On day 0 (control), day 3, day 7, and day 14, retinal RNA was extracted and processed on Affymetrix GeneChip Mouse Genome 430 2.0 arrays. Microarray data were analyzed using GCOS Version 1.4 and GeneSpring Version 7.3.1. RESULTS: The overall numbers of hyperoxia-regulated genes increased monotonically with exposure. Within that increase, however, a distinctive temporal pattern was apparent. At 3 days exposure, there was prominent upregulation of genes associated with neuroprotection. By day 14, these early-responsive genes were downregulated, and genes related to cell death were strongly expressed. At day 7, the regulation of these genes was mixed, indicating a possible transition period from stability at day 3 to degeneration at day 14. CONCLUSIONS: Microarray analysis of the response of the retina to prolonged hyperoxia demonstrated a temporal pattern involving early neuroprotection and later cell death, and provided insight into the mechanisms involved in the two phases of response. As hyperoxia is a consistent feature of the late stages of photoreceptor degenerations, understanding the mechanisms of oxygen toxicity may be important therapeutically.
Gene regulation induced in the C57BL/6J mouse retina by hyperoxia: a temporal microarray study.
Specimen part
View SamplesThe retinas of simian primates include a specialized, cone-rich, macula which regards the central visual field and mediates high acuity and colour vision. A prominent feature of the macula is the fovea centralis - a 1 mm-wide, avascular depression in the inner retinal surface that corresponds with a local absence of rods and a peak spatial density of cones in the outer photoreceptor layer. The arrangement of macular photoreceptors, and their specialized midget circuits, are the neural substrate for high resolution vision in primates. Macular-specific photoreceptor loss and abnormal blood vessel growth within the macula are the major causes of untreatable vision loss worldwide. However, the genes that regulate specialization of the macula, and the causes of its vulnerability to degeneration, remain obscure. Microarrays were used to compare gene expression between macula and non-macular regions during a critical phase of human retinal vascular development.
Differential expression of anti-angiogenic factors and guidance genes in the developing macula.
Specimen part
View SamplesLow-level infection is believed to play a role in the degradation of the outer blood retinal barrier, which is composed of retinal pigment epithelial (RPE) cells.
Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium.
Sex, Specimen part, Disease, Disease stage, Cell line
View SamplesTwo colon cancer cell lines are under study. SW480 and SW620. The first one is derived from primary cancer, SW620 are from lymphnode metastatic sites. they both comes from the sampe patient. Polisomal RNA fractions from the two isogenic colon cancer cells lines was purified by sucrose gradient and hybridized on affymetrix hgu133a chips. this study is complementary to the series GSE1323 were total RNA was used instead. Comparison between the polysomal fraction chips and the total RNA chips is performed and the analysis proposed in a paper from the authors (at the moment in preparation).
Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis.
No sample metadata fields
View Samples