We cultured tumor cells from 22 GBM under medium conditions favoring the growth of neural stem cells. 11 out of 15 primary GBM contained a significant CD133+ subpopulation that comprised cells showing all hallmarks of neural stem cells. Cell lines derived from these CD133+ GBM showed a neurosphere-like, non-adherent growth pattern. In contrast, 4 out of 15 cell lines derived from primary GBM grew adherent in vitro and were driven by CD133- tumor cells that fulfilled stem cell criteria. In vivo, these GBM were characterized by a significantly lower proliferation index but similar GFAP staining as compared to CD133+ GBM. Gene arrays from 2x3 representative cells lines are given.
CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles.
No sample metadata fields
View SamplesThe goal of the study was to sequence mRNA expression from sorted medullary thymic epithelial cell (mTEC) subsets in inducible Aire-CreERT2.R26-Stopfl-tdTomato lineage tracing mice after a pulse chase. Four cell subsets were sorted 7 days after a single 2mg pulse of tamoxifen administered by oral gavage. 4 biological replicates (1,2,3,4) were collected derived from 12 pooled thymi per replicate. From the DAPI-;CD45-;EpCAM+ TEC pool, cells were sorted as: pre-Aire (MHCIIlo;RFP-), early-Aire (MHCIIhi;RFP-), late-Aire (MHCIIhi;RFP+), and post-Aire (MHCIIlo;RFP+). The data were used to identify differentially expressed genes across the four mTEC subsets to examine mTEC heterogeneity and identify novel mTEC subpopulations. Overall design: Four biological replicates (12 pooled thymi per replicate) of each of four mTEC subsets were sorted from Aire-lineage tracing mice 7 days after pulse-chase with tamoxifen.
Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development.
Sex, Specimen part, Cell line, Subject
View SamplesWe use single-cell RNA-seq to determine distinct selection phenotypes of 2 rare thymic Treg cell progenitors as well as mature thymic Treg cells Overall design: A single cell suspension was generated from murine thymus then magnetically depleted for CD8/Ter119 before sorting CD25+Foxp3-, CD25-Foxp3lo and CD25+Foxp3+ cells from CD4+CD73- thymocytes on a BD Aria II. The 10x Genomic platform…
Thymic regulatory T cells arise via two distinct developmental programs.
Age, Cell line, Subject
View SamplesHigh-grade gliomas are amongst the most deadly human tumors. Treatment results are overall disappointing. Nevertheless, in several trials around 20% of patients respond to therapy. Diagnostic strategies to identify those patients that will ultimately profit from a specific targeted therapy are urgently needed. Gene expression profiling of untreated tumors is a well established approach for identifying biomarkers or diagnostic signatures. However, reliable signatures predicting treatment response in gliomas do not exist. Here we suggest a novel strategy for developing diagnostic signatures. We postulate that predictive gene expression patterns emerge only after tumor cells have been treated with the agent in vitro. Moreover, we postulate that enriching specimens for tumor initiating cells sharpens predictive expression patterns. Here, we report on the prediction of treatment response of cancer cells in vitro. As a proof of principle we analyzed gene expression in 18 short-term serum-free cultures of high-grade gliomas enhanced for brain tumor initiating cells (BTIC) before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated but not from untreated glioma cells allowed to predict therapy-induced impairment of proliferation of glioma cells in vitro. Prediction can be achieved with as little as 6 genes allowing for a straightforward translation into the clinic once the predictive power of the signature is shown also in vivo. Our strategy of using expression profiles from in vitro treated BTIC-enriched cultures opens new ways for trial design for patients with malignant gliomas.
Response-predictive gene expression profiling of glioma progenitor cells in vitro.
Specimen part, Treatment
View SamplesThe entorhinal cortex of the mouse seems to be sensitive to molecular mechanisms that have been linked to the pathology of Alzheimer's disease. In this microarray study we are interested in comparing the expression profile of the left versus the right EC of the mouse, in order to understand if there is a significant difference in gene expression that might reveal any insights into the differential activation of these areas.
Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease.
Age, Specimen part
View SamplesWe report an applicaton of small RNA sequencing using high throughput next generation sequencing to identify the small RNA content of cell lines. By sequencing over 30 million reads we could identify a new class of small RNAs previousy observed with tiling arrays and mapping to promoter regions of coding genes. We also identified a large number of small RNAs corresponding to internal exons of coding genes. By using different enzymatic treatments and immunoprecipitation experiments, we have determined that both the promoter associated small RNAs as well as ones within the body of the genes bear 5'' cap structures. Overall design: Examination of the expression of small RNAs (<200nt).
Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs.
No sample metadata fields
View SamplesBackground: Ion channels are key determinants for the function of excitable cells but little is known about their role and involvement during cardiac development. Earlier work identified Ca2+-activated potassium channels of small and intermediate conductance (SKCas) as important regulators of neural stem cell fate. Here, we have investigated their impact on the differentiation of pluripotent cells towards the cardiac lineage. Methods and Results: We have applied the SKCa-activator EBIO on embryonic stem cells and identified this particular ion channel family as a new critical target involved in the generation of cardiac pacemaker-like cells: SKCa-activation led to rapid remodeling of the actin cytoskeleton, inhibition of proliferation, induction of differentiation and diminished teratoma formation. Time-restricted SKCa-activation induced cardiac mesoderm and commitment to the cardiac lineage as shown by gene regulation, protein and functional electrophysiological studies. In addition, the differentiation into cardiomyocytes was modulated in a qualitative fashion, resulting in a strong enrichment of pacemaker-like cells. This was accompanied by induction of the sino-atrial gene program and in parallel by a loss of the chamber-specific myocardium. In addition, SKCa activity induced activation of the Ras-Mek-Erk signaling cascade, a signaling pathway involved in the EBIO-induced effects.
Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells.
Specimen part, Cell line
View SamplesWe report that the HF/HS-mediated functional enrichment of genes of immunity and inflammation is driven toward normal by the AOF supplementation Obesity may not constantly associate with metabolic disorders and mortality later in life, raising the challenging concept of healthy obesity. Here, high fat-high sucrose (HF/HS) feeding produces hyperglycaemia and hypercholesterolemia, increases oxidative stress, elevates endotoxemia, expands adipose tissue (with enlarged adipocytes, macrophage infiltration and accumulation of cholesterol and oxysterols), and reduces lifespan of obese mice. Despite persistence of obesity, supplementation with an antioxidant formulation normalizes plasma lipids and endotoxemia, prevents macrophage recruitment in adipose tissue, reduces adipose accumulation of cholesterol and cholesterol oxides, and extends lifespan. The HF/HS-mediated functional enrichment of genes of immunity and inflammation (in particular response to lipopolysaccharides) is driven towards normal by the antioxidant formulation. It is concluded that the limitation of immune cell infiltration in adipose tissue on the long term by an antioxidant formulation can increase lifespan independently of body weight and fat storage. It constitutes the hallmark of a healthy adiposity trait. Overall design: Examination of the expression profile of mice adipose tissues fed either standard (Std), High-fat/high-sucrose (HF/HS) or HF/HS + antioxidant formulation (AOF) for 180 days
Healthy adiposity and extended lifespan in obese mice fed a diet supplemented with a polyphenol-rich plant extract.
Age, Specimen part, Cell line, Subject
View SamplesHuman pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials, and offer a cost effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically-defined poly(ethylene glycol) (PEG) hydrogels and cultured in serum-free media to model cellular interactions of the developing brain. The precursors self-assembled into 3-dimensional (3D) neural constructs with cortically organized neuronal and glial cells, interconnected vascular networks, and ramified microglia. Replicate constructs were highly reproducible by RNA sequencing (Spearman's correlation coefficients, ? = 0.97) and robustly expressed neurogenesis, vasculature development, and microglia genes. Finally, linear support vector machines were used to construct a predictive model from RNA sequencing data for 240 neural constructs treated with 60 toxic and non-toxic chemicals, which then correctly classified 9/10 blinded compounds. Overall design: Note that all cell types were derived from the H1 human embryonic stem cell line. 11 samples for initial quality control (triplicate day 13 neural progenitor cells; quadruplicate day 21 neural progenitor cells cocultured with mesenchymal stem cells and endothelial cells; quadruplicate day 21 neural progenitor cells cocultured with mesenchymal stem cells and endothelial cells and migroglia/macrophage precursor cells), quadruplicate samples of H1 ES cells as a control for comparing to untreated toxicity study samples, and 288 samples associated with toxicity screening (all samples formed using neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors).
Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques.
No sample metadata fields
View SamplesChromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those generated by the ENCODE project in nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (=3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type-specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type-specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases. Overall design: Integrated analysis of islet chromatin modification and transcriptome data with those generated by the ENCODE project. NISC Comparative Sequencing Program
Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants.
No sample metadata fields
View Samples