Transcriptome profile of whole tissue and cultured neuronal cells from the hippocampus and cortex from pooled littermate embryos (at 17-18 days post conception) of 2 mouse genotypes C57BL/6 congenic WT and Fmr1 KO.
Gene expression analysis in Fmr1KO mice identifies an immunological signature in brain tissue and mGluR5-related signaling in primary neuronal cultures.
Specimen part
View SamplesSingle cell sequencing of microglia and perivascular macrophages was performed on brain tissue from different brain regions to obtain single cell expression profiles dependent on celltype and regional location. Overall design: 425 cells from mouse (CD-1) brains at different postnatal ages as well as embryonic day E11.5-E18.5.
Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution.
Subject
View SamplesMicroglia play critical roles in neural development and homeostasis. They are also implicated in neurodegenerative and neuroinflammatory diseases of the central nervous system (CNS). However, little is known about the presence of spatially and temporally restricted subclasses of microglia during CNS development and disease. Here, we combined massively parallel single-cell analysis, single-molecule FISH, advanced immunohistochemistry and computational modelling to comprehensively characterize novel microglia subclasses, which were transcriptionally different from perivascular macrophages, in up to six different CNS regions during development and diseases. Single-cell analysis revealed specific time- and region-dependent microglia subtypes during homeostasis. In contrast, demyelinating and neurodegenerative diseases evoked context-dependent microglia subtypes with distinct molecular hallmarks and diverse cellular kinetics. Finally, diverse microglia subsets were also identified in normal and diseased human brains. Our data provide new insights into the CNS endogenous immune system during development, health and perturbations. Overall design: CD45+ cells isolated from healthy and MS-affected human brains were FACS-sorted in 384-well plates and used for scRNAseq. The patients were aged between 22 and 25 years. Data comprises 5 healthy and 5 MS patients. CEL-Seq2 protocol was used for single cell sequencing (Hashimshony et al. 2016).
Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution.
Specimen part, Subject
View SamplesDue to heterogeneous multifocal nature of prostate cancer (PCa), there is currently a lack of biomarkers that stably distinguish it from benign prostatic hyperplasia (BPH), predict clinical outcome and guide the choice of optimal treatment. In this study, RNA-seq analysis was applied to formalin-fixed paraffin-embedded (FFPE) tumor and matched normal tissue samples collected from Russian patients with PCa and BPH. We identified 3384 genes differentially expressed (DE) (FDR < 0.05) between tumor tissue of PCa patients and adjacent normal tissue as well as both tissue types from BPH patients. Overexpression of four of the genes previously not associated with PCa (ANKRD34B, NEK5, KCNG3, and PTPRT) was validated by RT-qPCR. Furthermore, the enrichment analysis of overrepresented microRNA and transcription factor (TF) recognition sites within DE genes revealed common regulatory elements of which 13 microRNAs and 53 TFs were thus linked to PCa for the first time. Moreover, 8 of these TFs (FOXJ2, GATA6, NFE2L1, NFIL3, PRRX2, TEF, EBF2 and ZBTB18) were found to be differentially expressed in this study, making them not only candidate biomarkers of prostate cancer but also potential therapeutic targets. Overall design: Whole transcriptome profiling of tumor tissue and matched adjacent normal tissue from 15 patients with PCa and 2 with BPH.
Novel RNA biomarkers of prostate cancer revealed by RNA-seq analysis of formalin-fixed samples obtained from Russian patients.
Specimen part, Disease, Subject
View SamplesPaired-end sequencing of Vector and H-Ras expressing cell lines: p53-del and WT-p53 We found that activated forms of H-Ras and PIK3CA oncogene lead to repression of p63, a p53 family member. They also lead to induction of EMT, a cancer-related process. Our results suggest that, through Ras regulation of p63, this oncogene can drive mammary epithelial cells towards greater invasive ability. Overall design: 4 samples analyzed with 3 replicates each, control samples for each H-Ras line are the Vector cell line created at the same time
Repression of p63 and induction of EMT by mutant Ras in mammary epithelial cells.
Cell line, Subject
View SamplesRice (Oryza sativa, ssp. Japonica, cv. Nipponbare 1) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.<br></br>
Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
Age, Specimen part, Time
View SamplesRice (Oryza sativa, spp. Indica, cv. 93-11) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.
Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
Age, Specimen part, Time
View SamplesSingle cell RNA sequencing of murine circulating blood monocytes under steady state conditions. 2 plates of cx3cr1-cre:rosa26YFP monocytes and 4 plates (3 plates total monocytes and 1 plate Ly6Cint monocytes) were pre-enriched by CD115-biotin MACS and afterwards FACS sorted. Overall design: Indexed FACS sorting in 384well plates followed by MARS-Seq (Jaitin et al., Science 2014).
Genomic Characterization of Murine Monocytes Reveals C/EBPβ Transcription Factor Dependence of Ly6C<sup>-</sup> Cells.
Sex, Age, Specimen part, Cell line, Subject
View SamplesIn most organisms biological processes are partitioned, or phased to specific times over the day through interactions between external cycles of temperature (thermocycles) and light (photocycles), and the endogenous circadian clock. This orchestration of biological activities is achieved in part through an underlying transcriptional network. To understand how thermocycles, photocycles and the circadian clock interact to control time of day specific transcript abundance in Arabidopsis thaliana, we conducted four diurnal and three circadian two-day time courses using Affymetrix GeneChips (ATH1). All time courses were carried out with seven-day-old seedlings grown on agar plates under thermocycles (HC, hot/cold) and/or photocycles (LD, light/dark), or continuous conditions (LL, continuous light; DD, continuous dark, HH, continuous hot). Whole seedlings (50-100), including roots, stems and leaves were collected every four hours and frozen in liquid nitrogen. The four time courses interrogating the interaction between thermocycles, photocycles and the circadian clock were carried out as two four-day time courses. Four-day time courses were divided into two days under diurnal conditions, and two days under circadian conditions of continuous light and temperature. Thermocycles of 12 hours at 22C (hot) and 12 hours at 12C (cold) were used in this study. The two time courses interrogating photoperiod were conducted under short days (8 hrs light and 16 hrs dark) or long days (16 hrs light and 8 hrs dark) under constant temperature. In addition, the photoperiod time courses were in the Landsberg erecta (ler) accession, in contrast to the other time courses that are in the Columbia (col) background. The final time course interrogated circadian rhythmicity in seedlings grown completely in the dark (etiolated). Dark grown seedlings were synchronized with thermocycles, and plants were sampled under the circadian conditions of continuous dark and temperature.
Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.
Age, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis.
Sex, Specimen part
View Samples