Human embryonic stem cells were differentiated into peripheral sensory neurons via the intermediate generation of neural crest like cell (NCC). Using various markers we identified these cells as LTMR. We then analyzed there complete transcriptional profile in comparison to the intermediate neural crest like cells. Overall design: mRNA expression data of human ESC-derived sensory neuron clusters (10-20 cells) and human ESC-derived neural crest like cells (~100 cells) was generated by illumina deep sequencing
PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors.
No sample metadata fields
View SamplesCarbon nanotubes are cylindrically-shaped carbon nanostructures, made up of layers of graphene rolled onto themselves, with diameters similar to those of neuronal processes. In the last decade, CNT have been used as biocompatible growing substrates for neuronal attachment, differentiation and growth. In the perspective of new developments in tissue engineering, and in particular in spinal cord repair strategies, based on the use of CNTs, our aim is to clarify the biophysical interactions between CNTs and spinal cord neurons, studying the development of the morphological and functional characteristics of spinal neurons grown on CNT-based interfaces.
Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.
Specimen part
View SamplesMicroarray profiles of splenic Tregs and Tconvs from Flicr WT and KO mice
<i>Flicr</i>, a long noncoding RNA, modulates Foxp3 expression and autoimmunity.
Sex, Age
View SamplesOrganisms have adapted to the changing environmental conditions within the 24h cycle of the day by temporally segregating tissue physiology to the optimal time of the day. On the cellular level temporal segregation of physiological processes is established by the circadian clock, a Bmal1 dependent transcriptional oscillator network. The circadian clocks within individual cells of a tissue are synchronised by environmental signals, mainly light, in order to reach temporally segregated physiology on the tissue level. However, how light mediated synchronisation of peripheral tissue clocks is achieved mechanistically and whether circadian clocks in different organs are autonomous or interact with each other to achieve rhythmicity is unknown. Here we report that light can synchronise core circadian clocks in two peripheral tissues, the epidermis and liver hepatocytes, even in the complete absence of functional clocks in any other tissue within the whole organism. On the other hand, tissue extrinsic circadian clock rhythmicity is necessary to retain rhythmicity of the epidermal clock in the absence of light, proving for the first time that the circadian clockwork acts as a memory of time for the synchronisation of peripheral clocks in the absence of external entrainment signals. Furthermore, we find that tissue intrinsic Bmal1 is an important regulator of the epidermal differentiation process whose deregulation leads to a premature aging like phenotype of the epidermis. Thus, our results establish a new model for the segregation of peripheral tissue physiology whereby the synchronisation of peripheral clocks is acquired by the interaction of a light dependent but circadian clock independent pathway with circadian clockwork dependent cues. Overall design: Determining the epidermal circadian transcriptome in the presence or absence of non-epidermal clocks after 6-7 days in complete darkness (DD).
BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis.
Age, Specimen part, Cell line, Subject
View SamplesOrganisms have adapted to the changing environmental conditions within the 24h cycle of the day by temporally segregating tissue physiology to the optimal time of the day. On the cellular level temporal segregation of physiological processes is established by the circadian clock, a Bmal1 dependent transcriptional oscillator network. The circadian clocks within individual cells of a tissue are synchronised by environmental signals, mainly light, in order to reach temporally segregated physiology on the tissue level. However, how light mediated synchronisation of peripheral tissue clocks is achieved mechanistically and whether circadian clocks in different organs are autonomous or interact with each other to achieve rhythmicity is unknown. Here we report that light can synchronise core circadian clocks in two peripheral tissues, the epidermis and liver hepatocytes, even in the complete absence of functional clocks in any other tissue within the whole organism. On the other hand, tissue extrinsic circadian clock rhythmicity is necessary to retain rhythmicity of the epidermal clock in the absence of light, proving for the first time that the circadian clockwork acts as a memory of time for the synchronisation of peripheral clocks in the absence of external entrainment signals. Furthermore, we find that tissue intrinsic Bmal1 is an important regulator of the epidermal differentiation process whose deregulation leads to a premature aging like phenotype of the epidermis. Thus, our results establish a new model for the segregation of peripheral tissue physiology whereby the synchronisation of peripheral clocks is acquired by the interaction of a light dependent but circadian clock independent pathway with circadian clockwork dependent cues. Overall design: Determining the epidermal circadian transcriptome in the presence or absence of non-epidermal clocks under light entrainment (LD).
BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis.
Age, Specimen part, Cell line, Subject
View SamplesThis study used microarray expression analysis to identify global changes in transcript alteration in response to MEK inhibition. Genes under ERK control were identified in a panel of V600E BRAF and RTK-activated tumor cells and xenografts, using short-term inhibition of ERK activity using the MEK inhibitor PD0325901 (Pfizer).
(V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway.
No sample metadata fields
View SamplesThis study used microarray expression analysis to identify global changes in transcript alteration in response to MEK inhibition. Genes under ERK control were identified in a panel of V600E BRAF and RTK-activated tumor cells and xenografts, using short-term inhibition of ERK activity using the MEK inhibitor PD0325901 (Pfizer).
(V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway.
No sample metadata fields
View SamplesThis study used microarray expression analysis to identify global changes in transcript alteration in response to MEK inhibition. Genes under ERK control were identified in a representative V600E BRAF cell line as a function of time following exposure to a small molecule inhibitor of MEK.
(V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway.
No sample metadata fields
View SamplesThe use of cDNA microarrays has made it possible to analyze expression of thousands of genes simultaneously. We employed microarray gene expression profiling of porcine cDNA to compare myocardial gene expression in infarct core and remote myocardium at 1 week (n=3), 4 weeks (n=3), and 6 weeks (n=3) after surgically induced myocardial infarction (MI) and in sham-operated controls (n=3). More than 8,000 cDNA sequences were identified in myocardium that showed differential expression in response to MI. Different temporal and spatial patterns of gene expression were recognized in the infarct core tissue within this large set of data. Microarray gene profiling revealed candidate genes, some of them described for the first time, which elucidate changes in biological processes at different stages after MI.
Identification of temporal and region-specific myocardial gene expression patterns in response to infarction in swine.
Sex, Specimen part, Treatment, Time
View SamplesBecause niclosamide inhibits growth and progression of endometriotic lesions, we performed RNA-seq in order to identify genes whose expression is regulated by niclosamide in endometriotic lesions. Our results shown that niclosamide modulates several genes related to cell signaling, extracellular matrix, and inflammatory signaling. Overall design: A direct comparison of endometriotic like lesions developed in mice (n=3 per group) treated orally with either vehicle control or 200 mg/kg bw day of niclosamide for 3 weeks.
Niclosamide As a Potential Nonsteroidal Therapy for Endometriosis That Preserves Reproductive Function in an Experimental Mouse Model.
Sex, Specimen part, Cell line, Treatment, Subject
View Samples