Juvenile hormone (JH) and 20-hydroxy-ecdysone (20E) are highly versatile hormones, coordinating development, growth, and reproduction in insects. Pulses of 20E provide key signals for initiating developmental and physiological transitions, while JH promotes or inhibits these signals in a stage-specific manner. Previous evidence suggests that JH and 20E might modulate innate immunity, but whether and how these hormones interact to regulate the immune response remains unclear. Here we show that JH and 20E have antagonistic effects on the expression of antimicrobial peptides (AMPs) in Drosophila melanogaster. In S2* cells challenged with bacterial peptidoglycans, 20E induces promoter activity and expression of AMPs in a dose-dependent manner, while JH III and its synthetic analogs (JHa) methoprene and pyriproxyfen abolish this 20E-dependent response. Using microarrays and GFP reporter gene assays in adult flies, we confirm that JH is a hormonal immuno-suppressor in vivo. When silencing both partners of the ecdysone receptor (EcR ) / ultraspiracle (USP) heterodimer with RNAi in S2* cells, 20E fails to activate Diptericin (Dpt) expression, suggesting that 20E regulates expression of this gene through EcR / USP signaling. In contrast, silencing methoprene-tolerant (MET), a candidate JH receptor, does not impair the immuno-suppressive action of JH III and JHa, indicating that in this context MET does not function as a JH receptor. Our results suggest that the balance of 20E and JH is a major determinant of immune homeostasis in insects.
Hormonal regulation of the humoral innate immune response in Drosophila melanogaster.
Sex
View SamplesPurpose: Probe the transcriptome-wide changes in the expression pattern between WT and Sertoli-specific Upf2 KO testes Methods: Total RNA were extracted from WT and Sertoli-specific Upf2 KO testes in triplicates and subject to deep-sequencing in Ion Torrent seq platform. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl-/- mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl-/- retina, with a fold change =1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions: Our study represents the first detailed analysis of Upf2-mediated NMD pathway in Sertoli cell development Overall design: Testis mRNA profiling was generated from postnatal day 4 WT and Amh-cKO (Sertoli specific Upf2 KO) testes, in triplicates.
UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome.
No sample metadata fields
View SamplesIn this study, we use pre-malignant cells from different Cebpa mutant acute myeloid leukemia (AML) models. We have used conditional KO models (CreLoxP) and isolated hematopoietic cells shortly after induction of recombination, in order to look at pre-leukemic cells, which have acquired the first hit, but not yet undergone full malignant transformation.
Lack of the p42 form of C/EBPα leads to spontaneous immortalization and lineage infidelity of committed myeloid progenitors.
Sex, Specimen part
View SamplesThis report not only adds a novel mechanism to the current dogma on achieving global shortening of 3''UTRs, but also unveils a novel function of the NMD pathway in establishing tissue-specific transcriptome identity Overall design: We first generated prospermatogonia-specific Upf2 conditional knockout mice (Ddx4-Cre; Upf2 fl/?, hereafter called Ddx4-KO) by crossing Ddx4-Cre13 with Upf2 floxed.
UPF2-Dependent Nonsense-Mediated mRNA Decay Pathway Is Essential for Spermatogenesis by Selectively Eliminating Longer 3'UTR Transcripts.
No sample metadata fields
View SamplesHistone modifications are a key epigenetic mechanism to activate or repress the expression of genes. Data sets of matched microarray expression data and histone modification data measured by ChIP-seq exist, but methods for integrative analysis of both data types are still rare. Here, we present a novel bioinformatic approach to detect genes that are differentially expressed between two conditions putatively caused by alterations in histone modification. We introduce a correlation measure for integrative analysis of ChIP-seq and gene expression data and demonstrate that a proper normalization of the ChIP-seq data is crucial. We suggest applying Bayesian mixture models of different distributions to further study the distribution of the correlation measure. The implicit classification of the mixture models is used to detect genes with differences between two conditions in both gene expression and histone modification. The method is applied to different data sets and its superiority to a naive separate analysis of both data types is demonstrated. This GEO series contains the expression data of the Cebpa example data set.
Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models.
No sample metadata fields
View SamplesTranslocations involving the MLL genes are frequently found in Acute Myeloid Leukemia (AML) and are associated with poor prognosis. The MLL fusion proteins act as aberrant transcription factor activating a transcriptional program that transforms the cells, potentially through collaboration with other transcription factors. To investigate this we searched gene expression profiles from patients with MLL-rearranged AML compared with normal hematopoietic progenitor cells for transcriptional regulators and found targets of C/EBP to be up-regulated in the AML samples, suggesting that C/EBP might collaborate with MLL fusion proteins in the initial transformation process. We could show that transformation by MLL fusion proteins is dependent on C/EBP activity both in early progenitors as well as in GMPs. In contrast, C/EBP was found to be indispensable in an already established leukemia. These results suggest that C/EBP play an important role in the early transforming event of leukemogenesis.
Initiation of MLL-rearranged AML is dependent on C/EBPα.
Specimen part
View SamplesLong noncoding RNAs (lncRNAs) are emerging as powerful regulators of adipocyte differentiation and gene expression. However, their physiological role in adipose tissue biology and systemic energy metabolism has not been established. Here we show that adipose tissue expression of Blnc1, a conserved lncRNA regulator of thermogenic genes, is highly induced in obese mice. Fat-specific inactivation of Blnc1 impairs cold-induced thermogenesis and browning, exacerbates obesity-associated brown fat whitening, and worsens adipose tissue inflammation and fibrosis, leading to more severe insulin resistance and hepatic steatosis. On the contrary, transgenic expression of Blnc1 in adipose tissue elicits the opposite and beneficial metabolic effects, supporting a critical role of Blnc1 in driving adipose adaptation during obesity. Mechanistically, Blnc1 cell-autonomously attenuates proinflammatory cytokine signaling and promotes fuel storage in adipocytes through its protein partner Zbtb7b. This study illustrates a surprisingly pleiotropic and dominant role of lncRNA in driving adaptive adipose tissue remodeling and preserving metabolic health.
The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health.
Sex, Age, Specimen part, Treatment
View SamplesCancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in Acute Myeloid Leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that “non-mutated” splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This led to the identification of the splicing regulator RBM25 as a novel tumor suppressor, and down-regulation of RBM25 increased proliferation and decreased apoptosis in human leukemic cell lines. Mechanistically, we could show that RBM25 controlled the splicing of key genes, including those encoding the apoptotic regulator BCL-x and the MYC inhibitor BIN1. Specifically, we demonstrated that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels. This mechanism also appears to be operative in human AML patients where RBM25 levels correlative inversely with MYC activity and clinical outcome. Overall design: Examined transcriptome from U937 cells in biological triplicates.
The splicing factor RBM25 controls MYC activity in acute myeloid leukemia.
Specimen part, Cell line, Subject
View SamplesThe goal of this study was to investigate the role of hnRNP L-like in alternative pre-mRNA splicing in human B-cells through an RNA-Seq approach. Overall design: RNA-Seq was performed in DG75 cell line with over expression of hnRNP L-like or GFP as control.
HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing.
Cell line, Subject
View SamplesThe aim of the study was to investigate the role of TGIF1 in MLL-AF9 transformed cells
TGIF1 is a negative regulator of MLL-rearranged acute myeloid leukemia.
Cell line
View Samples