We used microarrays to study the effect of Chd1 loss of function in mouse ES cells.
Chd1 regulates open chromatin and pluripotency of embryonic stem cells.
Cell line
View SamplesWhether inflammatory macrophages can adopt features of the tissue resident niche and what mechanisms mediate phenotypic conversion remain unclear. In this study, we show by cell surface phenotyping, as well as by RNA-Seq transcriptional profiling and ATAC-Seq open chromatin regions profiling, that inflammatory monocyte can adopt a tissue resident phenotype, which is also accompanied by re-programming of the transcriptional profiles and remodeling of the open chromatin landscape. The conversion process is dependent on Vitamin A, suggesting that Vitamin A deficiency may lead to the failure to resolve inflammation, as inflammatory macrophages accumulate without adopting a tissue residency phenotype. Overall design: Monocyte-derived (N=3), tissue converted (N=3) and tissue resident (N=3) mouse peritoneal macrophages were FACS-sorted for RNASeq and ATACSeq.
Vitamin A mediates conversion of monocyte-derived macrophages into tissue-resident macrophages during alternative activation.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.
Specimen part, Cell line, Treatment
View SamplesProgenitor cells require coordinated expression of lineage-specific programs, and the nuclear lamina has emerged as an important scaffold for organizing chromatin in many cell types. These transcriptome profiling experiments accompany a study focused on defining nuclear organization changes during cardiac development. This dataset defines gene expression changes induced by Hdac3 deletion during early stages of cardiogenesis, modeled using ESC differentiation assays.
Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.
Cell line, Treatment
View SamplesSeveral aspects common to a Western lifestyle, including obesity and decreased physical activity, are known risks for gastrointestinal cancers. There is an increasing amount of evidence suggesting that diet profoundly affects the composition of the intestinal microbiota. Moreover, there is now unequivocal evidence linking a dysbiotic gut to cancer development. Yet, the mechanisms through which high-fat diet (HFD)-mediated changes in the microbial community impact the severity of tumorigenesis in the gut, remain to be determined.
High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity.
Sex, Age, Specimen part, Treatment
View SamplesMice with a congenital Snord116 deletion model aspects of the Prader-Willi Syndrome. In this study, we examine the gene expression changes in four hypothalamic nuclei across 24-hour food deprived versus ad libitum fed mice. Overall design: Using mice with paternal deletion of the Snord116 cluster, we laser-captured microdissected four hypothalamic nuclei for RNA sequencing: the ventromedial hypothalamus (VMH), arcuate nucleus (ARC), dorsomedial hypothalamus (DMH) and paraventricular nucleus (PVN). Samples were taken from male mice in either the fed or 24-hour fasted state.
Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.
Specimen part, Disease
View SamplesGenome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a bivalent histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate.
Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.
Specimen part
View SamplesGenome-wide mapping of transcriptional regulatory elements are essential tools for the understanding of the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of nascent, Pol-II-transcribed RNAs by Cap Analysis of Gene Expression (CAGE-Seq) with genome-wide profiling of histones modifications by chromatin immunoprecipitation (ChIP-seq) to map active promoters and enhancers in a model of human neural commitment, represented by embryonic stem cells (ESCs) induced to differentiate into self-renewing neuroepithelial-like stem cells (NESC). We integrated CAGE-seq, ChIP-seq and gene expression profiles to discover shared or cell-specific regulatory elements, transcription start sites and transcripts associated to the transition from pluripotent to neural-restricted stem cell. Our analysis showed that >90% of the promoters are in common between the two cell types, while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a “bivalent” histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provide a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and gene expression programs occurring in the transition from a pluripotent to a neural-restricted cell fate. Investiagtion of promoters usage changes during ESCs neural induction Overall design: ESCs and NESCs promoter usage profiling by CAGE-seq
Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.
Cell line
View Samples