OBJECTIVE: Previous expression microarray analyses have failed to take into consideration the genetic heterogeneity and complex patterns of ERG gene alteration frequently found in cancerous prostates. The objective of this study is for the first time, to integrate the mapping of ERG gene alterations with the collection of expression microarray data.
Integration of ERG gene mapping and gene-expression profiling identifies distinct categories of human prostate cancer.
Sex, Specimen part
View SamplesWe microdissected discrete sub-regions of esophageal squamous cell carcinoma (ESCC) and analyzed the transcriptomes throughout three-dimensional (3D) tumor space.
Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma.
Specimen part, Disease
View SamplesWe utilized tissue microdissection and expression microarrays to measure ex vivo gene expression profiles in twelve cases of patient-matched normal basal epithelial cells, normal differentiated squamous epithelium, and cancer.
Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma.
Specimen part, Disease
View SamplesGene expression analysis identified 27 of these 744 p300 and pol II associated genes as significantly increased (p 0.05) within the first hour following mitogen stimulation
Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes.
No sample metadata fields
View SamplesThe biological functions of nuclear topoisomerase I (Top1) have been difficult to study because knocking out TOP1 is lethal in metazoans. To reveal the functions of human Top1, we have generated stable Top1siRNA cell lines from colon and breast carcinomas (HCT116-siTop1 and MCF-7-siTop1, respectively). In those cells, Top2 compensates for Top1 deficiency. A prominent feature of the siTop1 cells is genomic instability, with chromosomal aberrations and histone gamma-H2AX foci associated with replication. siTop1 cells also show rDNA and nucleolar alterations, and increased nuclear volume. Genome-wide transcription profiling revealed 55 genes with consistent changes in siTop1 cells. Among them, asparagine synthetase (ASNS) was reduced in siTop1 cells, as it also was in cells with transient Top1 downregulation. Conversely, Top1 complementation increased ASNS, indicating a causal link between Top1 and ASNS expression. Correspondingly, pharmacological profiling showed l-asparaginase hypersensitivity in the siTop1 cells. Resistance to camptothecin, aphidicolin, hydroxyurea and staurosporine, and hypersensitivity to etoposide and actinomycin D demonstrated that Top1, in addition to being the target of camptothecins, also regulates DNA replication, rDNA stability and apoptosis. Overall, our studies demonstrate the pleiotropic nature of human Top1 activities. In addition to its classical DNA nicking-closing functions, Top1 plays critical non-classical roles in genomic stability, gene-specific transcription, and response to various anticancer agents.
Nonclassic functions of human topoisomerase I: genome-wide and pharmacologic analyses.
Specimen part, Disease, Disease stage, Cell line
View SamplesA high percentage of uveal melanoma patients develop metastatic tumors that predominately occur in the liver. To identify genes associated with metastasis in this pathology, we studied 63 molecular profiles derived from gene expression microarrays performed from enuceated primary tumors.
High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients.
Sex, Age, Specimen part
View SamplesThe current understanding of the molecular factors underlying LF2000-mediated transfection is largely unknown. Cationic LF2000 gene delivery system was used to transfer GFP transgene to HEK293T cells. FACS separation of transfected (GFP positive), untransfected (GFP negative), and untreated cells enabled gene expression profiles to be obtained using Affymetrix HG-U133A 2.0 microarrays for each cell population. Gene profiles were differentially compared for each population combination.
Temporal endogenous gene expression profiles in response to lipid-mediated transfection.
Cell line
View SamplesThe current understanding of the molecular factors underlying polyethylenimine(PEI)-mediated transfection is largely unknown. Cationic PEI was used to transfer GFP transgene to HEK293T cells. FACS separation of transfected (GFP positive), untransfected (GFP negative), and untreated cells enabled gene expression profiles to be obtained using Affymetrix HG-U133A 2.0 microarrays for each cell population. Gene profiles were differentially compared for each population combination.
Temporal endogenous gene expression profiles in response to polymer-mediated transfection and profile comparison to lipid-mediated transfection.
Cell line
View SamplesTranscriptional crosstalk between mammary gland, liver and adipose tissue
Homeorhetic adaptation to lactation: comparative transcriptome analysis of mammary, liver, and adipose tissue during the transition from pregnancy to lactation in rats.
No sample metadata fields
View SamplesWnt signaling is intrinsic to mouse embryonic stem cell self-renewal. Therefore it is surprising that reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is not strongly enhanced by Wnt signaling. Here, we demonstrate that active Wnt signaling inhibits the early stage of reprogramming to iPSCs, while it is required and even stimulating during the late stage. Mechanistically, this biphasic effect of Wnt signaling is accompanied by a change in the requirement of all four of its transcriptional effectors: Tcf1, Lef1, Tcf3, and Tcf4. For example, Tcf3 and Tcf4 are stimulatory early but inhibitory late in the reprogramming process. Accordingly, ectopic expression of Tcf3 early in reprogramming combined with its loss-of-function late enables efficient reprogramming in the absence of ectopic Sox2. Together, our data indicate that the step-wise process of reprogramming to iPSCs is critically dependent on the stage-specific control and action of all four Tcfs and Wnt signaling.
Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins.
Specimen part, Time
View Samples