This SuperSeries is composed of the SubSeries listed below.
Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine and four adenocarcinoma epitypes associated with patient outcome.
Disease, Disease stage
View SamplesLung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis. Experimental Design Whole-genome DNA methylation analysis using 450K Illumina BeadArrays was performed on 12 normal lung tissues and 124 tumors including 83 adenocarcinomas, 23 squamous cell carcinomas (SqCC), one adenosquamous cancer, five large cell carcinomas, nine large cell neuroendocrine carcinomas (LCNEC), and three small cell carcinomas (SCLC). Complimentary gene expression analyses was performed on 117 of the 124 tumors using Illumina HT12 V4 arrays (reported here).
Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine and four adenocarcinoma epitypes associated with patient outcome.
No sample metadata fields
View SamplesWe hypothesized that patients with sarcoidosis have characteristic mRNA profiles. Microarray analysis of gene expression was done on peripheral blood. Comparing peripheral blood from patients with sarcoidosis to controls, 872 transcripts were upregulated and 1039 were downregulated at >1.5-fold change and a significant q value. Several transcripts associated with interferon and STAT1 were upregulated. Lung and lymph node analyses also showed dramatic increases in STAT1 and STAT1-regulated chemokines. Granulomas in lymph nodes of patients with sarcoidosis expressed abundant STAT1 and phosphorylated STAT1. STAT1 might play an important role in sarcoidosis. This novel hypothesis unites seemingly disparate observations with regard to sarcoidosis including implication of a casual role for interferons, a suspected infectious trigger, TH1 predominating lymphocytes in bronchoalveolar lavage, and the association with hypercalcemia.
Insights in to the pathogenesis of axial spondyloarthropathy based on gene expression profiles.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesMolecular profiling of 159 lung cancers of different histological subtypes. A primary objective is to identify gene expression differences between histological subtypes. Sample overlap exist with GSE60644
Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification.
Sex, Age
View SamplesThe approval of genetically modified (GM) crops is preceded by years of intensive research to demonstrate safety to humans and environment. We recently showed that in vitro culture stress is the major factor influencing proteomic differences of GM vs. non-GM plants. This made us question the number of generations needed to erase such memory. We also wondered about the relevance of alterations promoted by transgenesis as compared to environment-induced ones.
Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants.
Specimen part
View SamplesA high percentage of uveal melanoma patients develop metastatic tumors that predominately occur in the liver. To identify genes associated with metastasis in this pathology, we studied 63 molecular profiles derived from gene expression microarrays performed from enuceated primary tumors.
High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients.
Sex, Age, Specimen part
View SamplesPrimary tumor growth induces host tissue responses that are believed to support and promote tumor progression. Identification of the molecular characteristics of the tumor microenvironment and elucidation of its crosstalk with tumor cells may therefore be crucial for improving our understanding of the processes implicated in cancer progression, identifying potential therapeutic targets, and uncovering stromal gene expression signatures that may predict clinical outcome. A key issue to resolve, therefore, is whether the stromal response to tumor growth is largely a generic phenomenon, irrespective of the tumor type, or whether the response reflects tumor-specific properties. To address similarity or distinction of stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to compare the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Invasive breast and prostate cancer-associated stroma was observed to display distinct transcriptomes, with a limited number of shared genes. Interestingly, both breast and prostate tumor-specific dysregulated stromal genes were observed to cluster breast and prostate cancer patients, respectively, into two distinct groups with statistically different clinical outcomes. By contrast, a gene signature that was common to the reactive stroma of both tumor types did not have survival predictive value. Univariate Cox analysis identified genes whose expression level was most strongly associated with patient survival. Taken together, these observations suggest that the tumor microenvironment displays distinct features according to the tumor type that provides survival-predictive value.
Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis.
Sex, Specimen part, Cell line
View SamplesOur purpose was to investigate genes and molecular mechanisms involved in patients with Leber congenital amaurosis (LCA). Fibroblasts from two unrelated clinically-identified patients (Coriell) were reprogrammed to pluripotency by retroviral transduction. These human induced Pluripotent Stem Cells (hiPSCs) were differentiated into neural stem cells (NSC) that mimicked the neural tube stage and retinal pigmented epithelial (RPE) cells that could be targeted by the disease. A genome wide transcriptome analysis was performed with Affymetrix Exon Array GeneChip, comparing LCA-hiPSCs derivatives to controls. The aim was to identify differentially expressed genes which may be associated with early developmental defect before the establishment of mature retinal circuitry.
Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis.
Sex, Specimen part, Cell line
View SamplesOur purpose was to investigate genes and molecular mechanisms involved in patients with Leber congenital amaurosis (LCA). Fibroblasts from two unrelated clinically-identified patients (Coriell) were reprogrammed to pluripotency by retroviral transduction. These human induced Pluripotent Stem Cells (hiPSCs) were differentiated into neural stem cells (NSC) that mimicked the neural tube stage and retinal pigmented epithelial (RPE) cells that could be targeted by the disease. A genome wide transcriptome analysis was performed with Affymetrix Exon Array GeneChip, comparing LCA-hiPSCs derivatives to controls. The aim was to identify differentially expressed genes which may be associated with early developmental defect before the establishment of mature retinal circuitry.
Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis.
Sex, Specimen part, Cell line
View Samples