Affymetrix Mouse Gene 1.0 ST Array profiles were generated from acticular cartilage derived from CBA and Str/ort mice at three ages (8W, 18W, 40W), corresponding to stages prior to, at and late after natural osteoarthritis (OA) onset in OA-prone Str/ort mice.
Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis.
Age, Specimen part
View SamplesLarge-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1 knockout mice displayed phenotypes similar to those observed on ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes. Overall design: Total RNA-seq from dissected regions of the digestive tract, from wild-type and percc1-/- mice.
Noncoding deletions reveal a gene that is critical for intestinal function.
Specimen part, Subject
View SamplesHere we tested a hypothesis that epileptogenesis influences expression pattern of genes in the basolateral amygdala that are critical for fear conditioning. Whole genome molecular profiling of basolateral rat amygdala was performed to compare the transcriptome changes underlying fear learning in epileptogenic and control animals. Our analysis revealed that after acquisition of fear conditioning 26 genes were regulated differently in the basolateral amygdala of both groups. Thus, our study provides the first evidence that not only the damage to the neuronal pathways but also altered composition or activity level of molecular machinery responsible for formation of emotional memories within surviving pathways can contribute to impairment in emotional learning in epileptogenic animals. Understanding the function of those genes in emotional learning provides an attractive avenue for identification of novel drug targets for treatment of emotional disorders after epileptogenesis-inducing insult.
Epileptogenesis alters gene expression pattern in rats subjected to amygdala-dependent emotional learning.
No sample metadata fields
View SamplesMacrophages, dendritic cells, conventional CD4+ T cells, CD8+ T cells, and regulatory T cells isolated from mouse colon cancer model MC38 tumors implanted subcutaneously to young (3 month) and aged (12 month) mice were sequenced using ImmGen's standard ultra-low input RNA-seq pipeline, in order to study age-dependent differences in intraltumoral immune cell functions and their impact on tumor control Overall design: Samples collected at the Center for Systems Biology at Mass General Hospital, shipped frozen to a central location, and sequenced using ImmGen's standard RNA-seq pipeline
Age-related tumor growth in mice is related to integrin α 4 in CD8+ T cells.
Age, Specimen part, Cell line, Subject
View SamplesTBI was induced with lateral fluid-percussion injury in adult male rats. Genome-wide RNA-seq of the perilesional cortex, ipsilateral thalamus and dorsal hippocampus was performed at 3 months post-TBI. The data highlighted chronic transcriptional changes, particularly, in the perilesional cortex and thalamus. Genes showing a significantly altered expression both in the cortex and thalamus were submitted to the LINCS web query to identify novel pharmacotherapies to improve post-TBI outcome. Overall design: TBI was induced to 5 rats, 5 sham operated served as a controls.
Analysis of Post-Traumatic Brain Injury Gene Expression Signature Reveals Tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as Treatment Targets.
No sample metadata fields
View SamplesPoorly differentiated thyroid carcinomas (PDTC) represent a heterogeneous, aggressive entity, presenting features that suggest a progression from well-differentiated carcinomas.
Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas.
Sex, Age, Specimen part
View SamplesOBJECTIVE: To analyze genome-wide changes in chondrocyte gene expression in a surgically induced model of early osteoarthritis (OA) in rats, to assess the similarity of this model to human OA, and to identify genes and mechanisms leading to OA pathogenesis. METHODS: OA was surgically induced in 5 rats by anterior cruciate ligament transection and partial medial meniscectomy. Sham surgery was performed in 5 additional animals, which were used as controls. Both groups underwent 4 weeks of forced mobilization, 3 times per week. RNA was extracted directly from articular chondrocytes in the OA (operated), contralateral, and sham-operated knees. Affymetrix GeneChip expression arrays were used to assess genome-wide changes in gene expression. Expression patterns of selected dysregulated genes, including Col2a1, Mmp13, Adamts5, Ctsc, Ptges, and Cxcr4, were validated by real-time polymerase chain reaction, immunofluorescence, or immunohistochemistry 2, 4, and 8 weeks after surgery. RESULTS: After normalization, comparison of OA and sham-operated samples showed 1,619 differentially expressed probe sets with changes in their levels of expression >/=1.5-fold, 722 with changes >/=2-fold, 135 with changes >/=4-fold, and 20 with changes of 8-fold. Dysregulated genes known to be involved in human OA included Mmp13, Adamts5, and Ptgs2, among others. Several dysregulated genes (e.g., Reln, Phex, and Ltbp2) had been identified in our earlier microarray study of hypertrophic chondrocyte differentiation. Other genes involved in cytokine and chemokine signaling, including Cxcr4 and Ccl2, were identified. Changes in gene expression were also observed in the contralateral knee, validating the sham operation as the appropriate control. CONCLUSION: Our results demonstrate that the animal model mimics gene expression changes seen in human OA, supporting the relevance of newly identified genes and pathways to early human OA. We propose new avenues for OA pathogenesis research and potential targets for novel OA treatments, including cathepsins and cytokine, chemokine, and growth factor signaling pathways, in addition to factors controlling the progression of chondrocyte differentiation.
Global analyses of gene expression in early experimental osteoarthritis.
No sample metadata fields
View SamplesThe proneural NEUROG2 is essential for neuronal commitment, cell cycle exit and neuronal differentiation. Characterizing genes networks regulated downstream of NEUROG2 is therefore of prime importance. To identify NEUROG2 early response genes, we combined gain of function in the neural tube with a global detection of modified transcripts using microarrays. We included in our study a mutant form of NEUROG2 (NEUROG2AQ) that cannot bind DNA and cannot trigger neurogenesis. Using this approach, we identified 942 genes modified at the onset of NEUROG2 activation. The global analysis of functions regulated by NEUROG2 allowed unmasking its rapid impact on cell cycle control. We found that NEUROG2 specifically represses a subset of cyclins acting at the G1 and S phases of the cell cycle, thereby impeding S phase re-entry. This repression occurs before modification of p27kip1, indicating that the decision to leave the cell cycle precedes the activation of this Cyclin-dependant Kinase Inhibitor. Moreover, NEUROG2 down-regulates only one of the D-type cyclins, cyclinD1, and maintaining cyclinD1 blocks the ability of the proneural to trigger cell cycle exit, without altering its capacity to trigger neuronal differentiation. The fact that NEUROG2 represses a subset but not all cell cycle regulators indicates that cell cycle exit is not an indirect consequence of neuronal differentiation but is precisely controlled by NEUROG2. Altogether our findings indicate that NEUROG2, by specifically repressing G1 and S cyclins, allows committed neuronal precursors to perform their last mitosis but blocks their re-entry in the cell cycle, thus favouring cell cycle exit.
NEUROG2 drives cell cycle exit of neuronal precursors by specifically repressing a subset of cyclins acting at the G1 and S phases of the cell cycle.
Specimen part, Treatment
View SamplesATC are among the most lethal malignancies, for which there is no effective treatment.
Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas.
Sex, Specimen part
View SamplesALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in cell fate maintenance in the embryo and shoot meristem. A defect in AMP1 function results in suspensor to embryo conversion and a hypertrophic shoot meristem forming ectopic stem cell pools. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. Double mutants in CYP78A5 and CYP78A7 develop a similar set of cell fate defects. To further assess whether this phenotypic overlap is also depicted in a congruency at the global gene expression level, we analyzed the transcriptomic responses of both genotypes
AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana.
Age, Specimen part
View Samples