OBJECTIVE: To analyze genome-wide changes in chondrocyte gene expression in a surgically induced model of early osteoarthritis (OA) in rats, to assess the similarity of this model to human OA, and to identify genes and mechanisms leading to OA pathogenesis. METHODS: OA was surgically induced in 5 rats by anterior cruciate ligament transection and partial medial meniscectomy. Sham surgery was performed in 5 additional animals, which were used as controls. Both groups underwent 4 weeks of forced mobilization, 3 times per week. RNA was extracted directly from articular chondrocytes in the OA (operated), contralateral, and sham-operated knees. Affymetrix GeneChip expression arrays were used to assess genome-wide changes in gene expression. Expression patterns of selected dysregulated genes, including Col2a1, Mmp13, Adamts5, Ctsc, Ptges, and Cxcr4, were validated by real-time polymerase chain reaction, immunofluorescence, or immunohistochemistry 2, 4, and 8 weeks after surgery. RESULTS: After normalization, comparison of OA and sham-operated samples showed 1,619 differentially expressed probe sets with changes in their levels of expression >/=1.5-fold, 722 with changes >/=2-fold, 135 with changes >/=4-fold, and 20 with changes of 8-fold. Dysregulated genes known to be involved in human OA included Mmp13, Adamts5, and Ptgs2, among others. Several dysregulated genes (e.g., Reln, Phex, and Ltbp2) had been identified in our earlier microarray study of hypertrophic chondrocyte differentiation. Other genes involved in cytokine and chemokine signaling, including Cxcr4 and Ccl2, were identified. Changes in gene expression were also observed in the contralateral knee, validating the sham operation as the appropriate control. CONCLUSION: Our results demonstrate that the animal model mimics gene expression changes seen in human OA, supporting the relevance of newly identified genes and pathways to early human OA. We propose new avenues for OA pathogenesis research and potential targets for novel OA treatments, including cathepsins and cytokine, chemokine, and growth factor signaling pathways, in addition to factors controlling the progression of chondrocyte differentiation.
Global analyses of gene expression in early experimental osteoarthritis.
No sample metadata fields
View SamplesWe examined transcriptome-wide effects of pertrurbation in KLF10 function (siKLF10) on TGFß-regulated genes and EMT in two different cells lines: A549 and Panc1. Overall design: We performed mRNA sequencing from A549 and Panc1 cells following following TGFß treatment and KLF10 knockdown. The mRNA-Seq includes following conditions: siControl, siKLF10, TGFß, siKLF10+TGFß (A549 and Panc1 cells). mRNA-sequencing was performed in duplicates for A549 and triplicates for Panc1 cells.
Krüppel-like Transcription Factor KLF10 Suppresses TGFβ-Induced Epithelial-to-Mesenchymal Transition via a Negative Feedback Mechanism.
Cell line, Subject
View SamplesAffymetrix Mouse Gene 1.0 ST Array profiles were generated from acticular cartilage derived from CBA and Str/ort mice at three ages (8W, 18W, 40W), corresponding to stages prior to, at and late after natural osteoarthritis (OA) onset in OA-prone Str/ort mice.
Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis.
Age, Specimen part
View SamplesSertoli cells (SCs), the only somatic cells within seminiferous tubules, associate intimately with developing germ cells. They not only provide physical and nutritional support but also secrete factors essential to the complex developmental processes of germ cell proliferation and differentiation. The SC transcriptome must therefore adapt rapidly during the different stages of spermatogenesis. We report comprehensive genome-wide expression profiles of pure populations of SCs isolated at 5 distinct stages of the first wave of mouse spermatogenesis, using RNA sequencing technology. We were able to reconstruct about 13 901 high-confidence, nonredundant coding and noncoding transcripts, characterized by complex alternative splicing patterns with more than 45% comprising novel isoforms of known genes. Interestingly, roughly one-fifth (2939) of these genes exhibited a dynamic expression profile reflecting the evolving role of SCs during the progression of spermatogenesis, with stage-specific expression of genes involved in biological processes such as cell cycle regulation, metabolism and energy production, retinoic acid synthesis, and blood-testis barrier biogenesis. Finally, regulatory network analysis identified the transcription factors endothelial PAS domain-containing protein 1 (EPAS1/Hif2a), aryl hydrocarbon receptor nuclear translocator (ARNT/Hif1ß), and signal transducer and activator of transcription 1 (STAT1) as potential master regulators driving the SC transcriptional program. Our results highlight the plastic transcriptional landscape of SCs during the progression of spermatogenesis and provide valuable resources to better understand SC function and spermatogenesis and its related disorders, such as male infertility. Overall design: Genome-wide expression profiling analysis using Illumina next-generation sequencing technology
Research resource: the dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis.
No sample metadata fields
View SamplesRationale: Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and hospitalizations in infants worldwide. Known risk factors, however, incompletely explain the variability of RSV disease severity among children. We postulate that severity of RSV infection is influenced in part by modulation of the host immune response by the local microbial ecosystem at the time of infection. Objectives: To define whether different nasopharyngeal microbiota profiles are associated with distinct host transcriptome profiles and severity in children with RSV infection. Methods: We analyzed the nasopharyngeal microbiota profiles of young children with mild and severe RSV disease and healthy matched controls by 16S-rRNA sequencing. In parallel, we analyzed whole blood gene expression profiles to study the relationship between microbial community composition, the RSV-induced host transcriptional response and clinical disease severity. Measurements and Main results: We identified five nasopharyngeal microbiota profiles characterized by enrichment of H. influenzae, Streptococcus, Corynebacterium, Moraxella or S. aureus. RSV infection and RSV hospitalization were positively associated with H. influenzae and Streptococcus, and negatively associated with S. aureus abundance, independent of age. The host response to RSV was defined by overexpression of interferon-related genes, and this was independent of the microbiota composition. On the other hand, transcriptome profiles of RSV infected children with H. influenzae and Streptococcus-dominated microbiota were characterized by greater overexpression of genes linked to toll-like receptor-signaling and neutrophil activation and were more frequently hospitalized Conclusions: Our data suggest an immunomodulatory role for the resident nasopharyngeal microbial community early in RSV infection, potentially affecting RSV disease severity.
Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection.
Sex, Specimen part, Disease, Race
View SamplesHuman rhinoviruses (HRV) are among the most common causes of respiratory infections in humans but can be frequently detected also in asymptomatic subjects. We evaluated the value of gene expression profiles to differentiate asymptomatic detection from symptomatic HRV infection in children.
Rhinovirus Detection in Symptomatic and Asymptomatic Children: Value of Host Transcriptome Analysis.
Sex, Age, Specimen part, Disease, Disease stage, Race
View SamplesHere we tested a hypothesis that epileptogenesis influences expression pattern of genes in the basolateral amygdala that are critical for fear conditioning. Whole genome molecular profiling of basolateral rat amygdala was performed to compare the transcriptome changes underlying fear learning in epileptogenic and control animals. Our analysis revealed that after acquisition of fear conditioning 26 genes were regulated differently in the basolateral amygdala of both groups. Thus, our study provides the first evidence that not only the damage to the neuronal pathways but also altered composition or activity level of molecular machinery responsible for formation of emotional memories within surviving pathways can contribute to impairment in emotional learning in epileptogenic animals. Understanding the function of those genes in emotional learning provides an attractive avenue for identification of novel drug targets for treatment of emotional disorders after epileptogenesis-inducing insult.
Epileptogenesis alters gene expression pattern in rats subjected to amygdala-dependent emotional learning.
No sample metadata fields
View SamplesMost lung adenocarcinoma deaths are related to metastases, indicating the necessity of detecting and inhibiting tumor cell dissemination. We have identified that overexpression of miRNAs located on 14q32 was associated with metastasis in lung adenocarcinoma patients. For functional analysis, we utilized CRISPR activation technology to increase levels of miRNAs clustered on 14q32 in a coordinated manner, and the results showed that 14q32 miRNA overexpression promoted tumor cell migratory and invasive properties. Whole transcriptome microarray analysis of the miRNA-overexpressing cells was performed to define the underlying molecular mechanisms.
Epigenetically Regulated Chromosome 14q32 miRNA Cluster Induces Metastasis and Predicts Poor Prognosis in Lung Adenocarcinoma Patients.
Specimen part, Cell line
View SamplesMacrophages, dendritic cells, conventional CD4+ T cells, CD8+ T cells, and regulatory T cells isolated from mouse colon cancer model MC38 tumors implanted subcutaneously to young (3 month) and aged (12 month) mice were sequenced using ImmGen's standard ultra-low input RNA-seq pipeline, in order to study age-dependent differences in intraltumoral immune cell functions and their impact on tumor control Overall design: Samples collected at the Center for Systems Biology at Mass General Hospital, shipped frozen to a central location, and sequenced using ImmGen's standard RNA-seq pipeline
Age-related tumor growth in mice is related to integrin α 4 in CD8+ T cells.
Age, Specimen part, Cell line, Subject
View SamplesTBI was induced with lateral fluid-percussion injury in adult male rats. Genome-wide RNA-seq of the perilesional cortex, ipsilateral thalamus and dorsal hippocampus was performed at 3 months post-TBI. The data highlighted chronic transcriptional changes, particularly, in the perilesional cortex and thalamus. Genes showing a significantly altered expression both in the cortex and thalamus were submitted to the LINCS web query to identify novel pharmacotherapies to improve post-TBI outcome. Overall design: TBI was induced to 5 rats, 5 sham operated served as a controls.
Analysis of Post-Traumatic Brain Injury Gene Expression Signature Reveals Tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as Treatment Targets.
No sample metadata fields
View Samples