Here we studied the effects of anticonvulsant drug exposure in a human embryonic stem cell (hESC) based neuro- developmental toxicity test (hESTn). During neural differentiation the cells were exposed, for either 1 or 7 days, to non-cytotoxic concentration ranges of valproic acid (VPA) or carbamazepine (CBZ), anti-epileptic drugs known to cause neurodevelopmental toxicity.
Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay.
Time
View SamplesAbout 10% of Down syndrome (DS) infants are born with a myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). In order to understand differences that may exist between fetal and bone marrow megakaryocyte progenitor cell populations we flow sorted megakaryocyte progenitor cells and performed microarray expression analysis.
Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation.
Specimen part
View SamplesAbout 10% of Down syndrome (DS) infants are born with a myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). In order to understand differences that may exist between fetal and bone marrow megakaryocyte progenitor cell populations we flow sorted megakaryocyte progenitor cells and performed microarray expression analysis.
Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation.
Specimen part
View SamplesEvaluation of the role of RIP4 in lung adenocarcinoma revealed that RIP4 inhibits STAT3 signaling in vitro and in vivo. Repression of RIP4 enhanced STAT3 signaling activation in KRAS LSL/G12D/wt; p53flox/flox murine tumors. This promoted cancer dedifferentiation through ECM remodeling
RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens.
Specimen part, Cell line, Treatment, Time
View SamplesEpigenetic regulation is based upon a network of complexes that modulate the chromatin character and structure of the genome to impact gene expression, cell fate, and development. Thus, epigenetic modulators represent novel therapeutic targets to treat a range of diseases including malignancies. Infectious pathogens such as herpesviruses are also regulated by cellular epigenetic machinery, and epigenetic therapeutics represent a novel approach to control infection, persistence, and the resulting recurrent disease. The histone methyltransferases EZH2 and EZH1 (EZH2/1) are epigenetic repressors that suppress gene transcription via propagation of repressive H3K27me3 enriched chromatin domains. However, while EZH2/1 are implicated in repression of herpesviral gene expression, inhibitors of these enzymes suppressed HSV primary infection in vitro and in vivo. Furthermore, these compounds blocked lytic viral replication following induction of HSV reactivation in latently infected sensory ganglia. Suppression correlated with the induction of multiple inflammatory, stress, and anti-pathogen pathways as well as enhanced recruitment of immune cells to in vivo infection sites. Importantly, EZH2/1 inhibitors induced a cellular antiviral state that also suppressed infection with DNA (hCMV, Adenovirus) and RNA (Zika virus) viruses. Thus, EZH2/1 inhibitors have considerable potential as general antivirals through activation of cellular antiviral and immune responses.
Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens.
Cell line, Treatment, Time
View SamplesLow reduced red:far-red ratio [R:FR] signaling through phytochromes induces shade avoidance responses, including petiole elongation. Jasmonic acid-mediated defense against herbivores and pathogens is inhibited under these conditions.
Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism.
Specimen part, Treatment
View SamplesCancer resistance is a major cause for longevity of the naked mole-rat. Recent liver transcriptome analysis in this animal compared to wild-derived mice revealed higher expression of alpha2-macroglobulin (A2M) and cell adhesion molecules, which contribute to the naked mole-rat's cancer resistance. Notably, A2M is known to dramatically decrease with age in humans. We hypothesize that this might facilitate tumour development. Here we found that A2M modulates tumour cell adhesion, migration and growth by inhibition of tumour promoting signalling pathways, e.g. PI3K / AKT, SMAD and up-regulated PTEN via down-regulation of miR-21, in vitro and in tumour xenografts. A2M increases the expression of CD29 and CD44 but did not evoke EMT. Transcriptome analysis of A2M-treated tumour cells, xenografts and mouse liver demonstrated a multifaceted regulation of tumour promoting signalling pathways indicating a less tumorigenic environment mediated by A2M. By virtue of these multiple actions the naturally occurring A2M has strong potential as a novel therapeutic agent. Overall design: 11 samples: 5 treated with PBS, 6 treated with A2M
The anti-tumorigenic activity of A2M-A lesson from the naked mole-rat.
Specimen part, Cell line, Treatment, Subject
View SamplesLow R:FR signaling through phytochromes induces shade avoidance responses, including petiole elongation. Salicylic acid-mediated defense against pathogens is inhibited under these conditions.
Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis.
Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa.
Specimen part, Disease, Disease stage, Subject, Time
View Samples