The goal of our study was to molecularly dissect mesothelioma tumor pathways by mean of microarray technologies in order to identify new tumor biomarkers, that could be used as early diagnostic markers and possibly as specific molecular therapeutic targets. We performed Affymetrix U133A plus 2.0 microarray analysis comparing 9 human pleural mesotheliomas with 4 normal pleural specimen. Stringent statistical feature selection detected a set of differentially expressed genes that were further evaluated to identify potential biomarkers to be used in early diagnostics. Selected genes were confirmed by RT-PCR. As reported by other mesothelioma profiling studies, most of genes are involved in G2/M transition. Our list contains several genes previously described as prognostic classifier. Furthermore, we found novel genes never associated before to mesothelioma and could be involved in tumor progression. Notable, the identification of MMP-14, a member of matrix metalloproteinase family. This molecule has been described as a new disease marker and could be used as biomarker also for mesothelioma early diagnosis and prognosis and that can be viewed as new and effective therapeutic target to test.
Global gene expression profiling of human pleural mesotheliomas: identification of matrix metalloproteinase 14 (MMP-14) as potential tumour target.
No sample metadata fields
View SamplesHere we studied the effects of anticonvulsant drug exposure in a human embryonic stem cell (hESC) based neuro- developmental toxicity test (hESTn). During neural differentiation the cells were exposed, for either 1 or 7 days, to non-cytotoxic concentration ranges of valproic acid (VPA) or carbamazepine (CBZ), anti-epileptic drugs known to cause neurodevelopmental toxicity.
Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay.
Time
View SamplesAbout 10% of Down syndrome (DS) infants are born with a myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). In order to understand differences that may exist between fetal and bone marrow megakaryocyte progenitor cell populations we flow sorted megakaryocyte progenitor cells and performed microarray expression analysis.
Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation.
Specimen part
View SamplesAbout 10% of Down syndrome (DS) infants are born with a myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). In order to understand differences that may exist between fetal and bone marrow megakaryocyte progenitor cell populations we flow sorted megakaryocyte progenitor cells and performed microarray expression analysis.
Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation.
Specimen part
View SamplesEvaluation of the role of RIP4 in lung adenocarcinoma revealed that RIP4 inhibits STAT3 signaling in vitro and in vivo. Repression of RIP4 enhanced STAT3 signaling activation in KRAS LSL/G12D/wt; p53flox/flox murine tumors. This promoted cancer dedifferentiation through ECM remodeling
RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens.
Specimen part, Cell line, Treatment, Time
View SamplesEpigenetic regulation is based upon a network of complexes that modulate the chromatin character and structure of the genome to impact gene expression, cell fate, and development. Thus, epigenetic modulators represent novel therapeutic targets to treat a range of diseases including malignancies. Infectious pathogens such as herpesviruses are also regulated by cellular epigenetic machinery, and epigenetic therapeutics represent a novel approach to control infection, persistence, and the resulting recurrent disease. The histone methyltransferases EZH2 and EZH1 (EZH2/1) are epigenetic repressors that suppress gene transcription via propagation of repressive H3K27me3 enriched chromatin domains. However, while EZH2/1 are implicated in repression of herpesviral gene expression, inhibitors of these enzymes suppressed HSV primary infection in vitro and in vivo. Furthermore, these compounds blocked lytic viral replication following induction of HSV reactivation in latently infected sensory ganglia. Suppression correlated with the induction of multiple inflammatory, stress, and anti-pathogen pathways as well as enhanced recruitment of immune cells to in vivo infection sites. Importantly, EZH2/1 inhibitors induced a cellular antiviral state that also suppressed infection with DNA (hCMV, Adenovirus) and RNA (Zika virus) viruses. Thus, EZH2/1 inhibitors have considerable potential as general antivirals through activation of cellular antiviral and immune responses.
Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens.
Cell line, Treatment, Time
View SamplesWe used Affymetrix DNA arrays to investigate the extent to which nuclear HDAC4 accumulation affects neuronal gene expression.
HDAC4 governs a transcriptional program essential for synaptic plasticity and memory.
Specimen part
View SamplesLow reduced red:far-red ratio [R:FR] signaling through phytochromes induces shade avoidance responses, including petiole elongation. Jasmonic acid-mediated defense against herbivores and pathogens is inhibited under these conditions.
Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism.
Specimen part, Treatment
View SamplesLow R:FR signaling through phytochromes induces shade avoidance responses, including petiole elongation. Salicylic acid-mediated defense against pathogens is inhibited under these conditions.
Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis.
Age, Specimen part, Treatment
View Samples