This SuperSeries is composed of the SubSeries listed below.
A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome.
No sample metadata fields
View SamplesIn many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the C. elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12 bp consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and non-compensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.
A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome.
No sample metadata fields
View SamplesHow G4C2 repeat expansions in C9orf72 cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is not understood. Here, we report the first mouse model to express poly(PR), a dipeptide repeat protein synthesized from expanded G4C2 repeats. Expression of GFP-(PR)50 throughout the mouse brain yielded progressive brain atrophy, neuron5 loss, loss of poly(PR)-positive cells and gliosis, culminating in motor and memory impairments. We found that poly(PR) bound DNA, localized to heterochromatin, and caused abnormal histone methylation, lamin invaginations, decreases in HP1a expression, and disruptions of HP1a liquid phases. These aberrations of histone methylation, lamins and HP1a, which regulate heterochromatin structure and gene expression, were accompanied by repetitive element10 expression and double-stranded RNA accumulation. Thus, we uncover new mechanisms by which poly(PR) contributes to c9FTD/ALS pathogenesis. Overall design: Examination of transcriptome profiles using RNA-seq on 3 month old mice expressing PR and GR polypetides with an AAV expression vector. The Poly(PR) analysis consisted of 7 mice expressing AAV-GFP-(PR)50 and 4 AAV-GFP harvest-matched controls. The Poly(GR) analysis consisted of 4 mice expressing AAV-GFP-(GR)100 and 4 AAV-GFP harvest-matched controls.
Heterochromatin anomalies and double-stranded RNA accumulation underlie <i>C9orf72</i> poly(PR) toxicity.
Sex, Age, Cell line, Subject
View SamplesAnalysis of the transcriptional changes in the heart resulting from the loss of cardiac enhancers. As there remains a limited understanding of the phenotypic consequences of enhancer mutations, we examined the impact of loss of function mutations by deleting two enhancers near heart disease genes in mice. In both cases, we observed loss of target gene expression, as well as cardiac phenotypes consistent with heart disease in humans, highlighting the functional importance of enhancers for normal heart function, as well as the potential contribution of enhancer mutations to heart disease. Overall design: Hearts were dissected from wild-type and enhancer-null mice (either embryonic or adult) and processed for deep RNA-seq analysis.
Genome-wide compendium and functional assessment of in vivo heart enhancers.
Sex, Specimen part, Cell line, Subject
View SamplesMicroRNA microarrays and RNA expression arrays were used to identify functional signaling between neural stem cell progenitor cells (NSPC) and brain endothelial cells (EC) that are critical during embryonic development and tissue repair following brain injury.
The role of microRNAs in neural stem cell-supported endothelial morphogenesis.
Specimen part, Disease, Treatment
View SamplesWe used microarrays to identify transcripts regulated by dexamethasone in omental (Om) and abdominal subcutaneous (Abdsc) adipose tissues of severely obese females obtained during elective surgeries.
Depot Dependent Effects of Dexamethasone on Gene Expression in Human Omental and Abdominal Subcutaneous Adipose Tissues from Obese Women.
Specimen part, Disease stage, Treatment
View SamplesWe investigate the role of Snf2l in ovaries by characterizing a mouse bearing an inactivating deletion on the ATPase domain of Snf2l (Ex6DEL). Snf2l mutant mice produce significantly fewer eggs than control mice when superovulated. Thus, gonadotropin stimulation leads to a significant deficit in secondary follicles and an increase in abnormal antral follicles. We profiled the expression of granulosa cells from Snf2l WT and Ex6DEL mice treated with pregnant mares' serum gonadotropin followed by human chorionic gonadotropin
The imitation switch ATPase Snf2l is required for superovulation and regulates Fgl2 in differentiating mouse granulosa cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of the cortical neurons that mediate antidepressant responses.
Specimen part, Treatment
View SamplesMicroarrays were used to analyze differential gene expression and to help determine the efficacy of Iressa (gefitinib), a tyrosine kinase inhibitor, on endometrial cancer cells.
EGFR isoforms and gene regulation in human endometrial cancer cells.
Specimen part, Cell line
View SamplesNine cigarette smoke condensates (CSCs) were produced under a standard ISO smoking machine regimen and one was produced by a more intense smoking machine regimen. These CSCs were used to treat primary normal human bronchial epithelial cells for 18 hours.
Effects of 10 cigarette smoke condensates on primary human airway epithelial cells by comparative gene and cytokine expression studies.
Specimen part
View Samples