Tumor microenvironments present significant barriers to anti-tumor agents. Molecules involved in multicellular tumor microenvironments, however, are difficult to study ex vivo. Here, we generated a matrix-free tumor spheroid model using the NCI-H226 mesothelioma cell line and compared the gene expression profiles of spheroids and monolayers using microarray analysis. Microarray analysis revealed that 142 probe sets were differentially expressed between tumor spheroids and monolayers. Gene ontology analysis revealed that upregulated genes were primarily related to immune response, wound response, lymphocyte stimulation and response to cytokine stimulation, whereas downregulated genes were primarily associated with apoptosis. Among the 142 genes, 27 are located in the membrane and related to biologic processes of cellular movement, cell-to-cell signaling, cellular growth and proliferation and morphology. Western blot analysis validated elevation of MMP2, BAFF/BLyS/TNFSF13B, RANTES/CCL5 and TNFAIP6/TSG-6 protein expression in spheroids as compared to monolayers. Thus, we have reported the first large scale comparison of the transcriptional profiles using an ex vivo matrix-free spheroid model to identify genes specific to the three-dimensional biological structure of tumors. The method described here can be used for gene expression profiling of tumors other than mesothelioma.
Changes in global gene expression associated with 3D structure of tumors: an ex vivo matrix-free mesothelioma spheroid model.
Specimen part, Cell line
View SamplesMCF-7aro cells were used to generate a cell culture model system that is resistant to 3 aromatase inhibitors (AIs), letrozole, anastrozole and exemestane. For comparison, the MCF-7aro cells were also used to generate the tamoxifen-resistant cells as well as long-term estrogen deprived, LTEDaro.
Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor.
No sample metadata fields
View SamplesAnalysis of gene expression of Pdx-EGFP1+ pancreatic progenitors before or after co-culture at mRNA level. The hypothesis tested in the study was that the overall gene expression in Pdx1-EGFP+ does not alter after co-culture with endothelial cells. The result supported our hypothesis. Overall design: Total RNA isolated from Pdx1-EGFP+ progenitors from the Pdx1-EGFP HUES8 cell-derived pancreatic progenitor population before (none) and after co-culture (AKT-HUVEC, MPEC, or BJ) Fig 2d in publication.
Endothelial cells control pancreatic cell fate at defined stages through EGFL7 signaling.
No sample metadata fields
View SamplesTo investigate the impact of CD4+ T cells on tumor vasculature, we performed transcriptome profiling on tumor-associated endothelial cells in mice with or without functional CD4 T cells. In addition to examining four pathways that affect vessel maturation (VEGFA, ANGPT1/ANGPT2, TGFbR, and sphingolipid metabolism), we ran Gene Set Enrichment Analysis (GSEA) and found a down-regulation of cellular adhesion and extracellular matrix assembly-related pathways in the CD4 T cell deficient group. This suggests that CD4+ T cells play an important role in promoting tumor vessel integrity and normalization. Overall design: Transcriptome profiling of E0771 murine tumor-associated endothelial cells isolated from CD4+ T cell competent (CD8KO, Tie2Cre, WT) or deficient mouse strains (CD4KO, Tie2Cre;H2Ab flox and TCRKO) .
Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming.
Subject
View SamplesThe X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes we identified the microphtalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' untranslated region. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas. Overall design: We sequenced transcripts associated with translationally active ribosomes (polysomes) isolated by sucrose gradient fractionation from DDX3X and control siRNA-transduced HT144 cells. Experiments were performed in duplicates.
The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetic architecture of insulin resistance in the mouse.
Sex, Age, Specimen part
View SamplesIdentify genes in the gonadal adipose tissue whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. The RMA values of genes were used for genome wide association as described in Parks et al Cell Metabolism 2015. These data are used to identify candidate genes at loci associated with obesity and dietary responsiveness.
Genetic architecture of insulin resistance in the mouse.
Sex, Age, Specimen part
View SamplesIdentify genes in the liver whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. The RMA values of genes were used for genome wide association as described in Parks et al Cell Metabolism 2015. These data are used to identify candidate genes at loci associated with obesity and dietary responsiveness.
Genetic architecture of insulin resistance in the mouse.
Sex, Age, Specimen part
View SamplesTGFBR1*6A is a common hypomorphic variant of the type 1 Transforming Growth Factor Beta Receptor (TGFBR1), which has been associated with increased cancer risk in some studies. Although TGFBR1*6A is capable of switching TGF- growth inhibitory signals into growth stimulatory signals when stably transfected into MCF-7 breast cancer cells, TGFBR1*6A biological effects are largely unknown. To broadly explore TGFBR1*6A potential oncogenic properties, we assessed its impact on the migration and invasion of MCF-7 cells. We found that TGFBR1*6A significantly enhances MCF-7 cell migration and invasion in a TGF- signaling independent manner. We set up and performed a gene array using the conditions mimicking the cell migration experiments to determine which genes in the migratory pathway were differentially regulated between the MCF-7*6A cells and the MCF-7*9A (wild type transfected) cells. The gene array identified two downregulated genes in *6A compared to *9A that are involved in cell migration and invasion: ARHGAP5, encoding ARHGAP5, and FN1, encoding fibronectin-1 (FN1). We were subsequently able to use this information in further studies in the lab.
TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.
Specimen part
View Samples